

Charged lepton flavour violation: theory overview Epton navour violation. muons and neutrons at high-intensities

Ana M. Teixeira **Ana M. Teixeira**

Laboratoire de Clermont - LPC **Laboratoire de Physique de Clermont - LPC**

PSI User's Meeting 2020, 28 January 2020 **BLV 2024 Karlsruhe, 8 October 2024**

Flavour and CP violation: SM

Flavour in the **Standard Model:** interactions between *fermion* families (and the *Higgs*)

and $Y_{ii}^{\ell} \rightarrow$ encode **flavour** dynamics (masses, mixings & CP violation) **flavour-universal** gauge interactions Y_{ij}^u , Y_{ij}^d and $Y_{ij}^e \rightarrow$

SM quark sector: 6 massive states flavour violated in charged current interactions V^{ij}_{CKM} W^{\pm} \bar{q} _{*i*} q'_j conservation of total baryon number in SM interactions CP violation sources: δ_{CKM} and θ_{QCD} (strongly constrained by **tiny** neutron **EDM)** not enough to explain observed **BAU from baryogenesis**

Extensive probes of the **"CKM paradigm"**: meson oscillation and decays, CP violation...

... and a roller-coaster ride for hints of New Physics in recent years!

SM lepton sector: (strictly) **massless neutrinos**

 conservation of total lepton number and lepton flavours **tiny** leptonic **EDMs** (4-loop... d_e^{CKM} ≤ $10^{-38}e$ cm)

Neutrino oscillations: SM description **insufficient! First** laboratory **discovery of New Physics!**

Lepton flavours: from ν oscillations... bin property and the contract of the contract

Neutrino oscillations: SM description insufficient! Added complexity to the flavour problem... Violation of lepton flavour in neutral lepton sector opens a wide door to flavour violation in the charged lepton sector! IN2I
utrino oscillations: SM description insufficient! Added complexity to the flavour probtem: raded comprensey to the narrow pressure Added complexity to the flavour proble on sector opens a wide door

How general is this once we extend the SM to accommodate $\nu^{}_{\alpha} \leftrightsquigarrow \nu^{}_{\beta}$ *?* $t \in \mathbb{R}^n$ at \mathbb{R}^n defines a set of level.

In the most minimal extension
$$
S M_{m_{\nu}}
$$
 $[S M_{m_{\nu}} = "ad-hoc" m_{\nu} \text{ (Dirac)}, U_{PMNS}]$
\n
$$
\frac{W}{W_{m_{\nu}}} \int_{\frac{W}{U_{\mu}}} V_{\frac{W}{U_{\mu}}} \left[(M_{\mu} - e\gamma) \right] = \frac{m_{\mu}^{5}}{16\pi} (|A_{L}|^{2} + |A_{R}|^{2})
$$
\n
$$
\sum_{i} \frac{U_{ei}^{*} U_{\mu i}}{(k^{2} - m_{i}^{2})} = \sum_{i} \frac{U_{ei}^{*} U_{\mu i}}{k^{2}} + \sum_{i} \frac{U_{ei}^{*} U_{\mu i}}{k^{2}} \left(\frac{m_{i}^{2}}{k^{2}} \right) + \mathcal{O} \left(\frac{m_{i}^{4}}{k^{4}} \right) \text{ ft} \sum_{i} U_{ei}^{*} U_{\mu i} \frac{m_{i}^{2}}{M_{W}^{2}} = U_{e2}^{*} U^{e2} \frac{\Delta m_{21}^{2}}{M_{W}^{2}} + U_{e3}^{*} U^{e3} \frac{\Delta m_{31}^{2}}{M_{W}^{2}}
$$
\n
$$
BR(\mu \to e\gamma) = \frac{3\alpha_{e}}{32\pi} \left| \sum_{i} U_{ei}^{*} U_{\mu i} \frac{m_{i}^{2}}{M_{W}^{2}} \right|^{2} \implies BR(\mu \to e\gamma) \approx 10^{-54 \div -55}
$$

Lepton flavours: from ν oscillations... bin property of the same of th

Neutrino oscillations: SM description insufficient! Added complexity to the flavour problem... Violation of lepton flavour in neutral lepton sector opens a wide door to flavour violation in the charged lepton sector! IN2I
utrino oscillations: SM description insufficient! Added complexity to the flavour probtem: raded comprensey to the narrow pressure Added complexity to the flavour proble on sector opens a wide door

How general is this once we extend the SM to accommodate $\nu^{}_{\alpha} \leftrightsquigarrow \nu^{}_{\beta}$ *?* $t \in \mathbb{R}^n$ at \mathbb{R}^n defines a set of level.

Example: Still beyond observation (2-loop contributions
 $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end$ The state of total lepton
total lepton
cLFV possib In the most **minimal extension SM** $_{m_{\nu}}$ $\hspace{1cm}$ [SM $_{m_{\nu}}$ = "ad-hoc" m_{ν} (Dirac), U $_{PMNS}$] total **lepton number** still **conserved** (**LNC**) lepton EDMs still beyond observation (2-loop contributions from $\delta_{\textsf{CP}}$) m_{ν} [SM $_{m_{\nu}}$ = "ad-hoc" m_{ν} (Dirac), U _{PMNS} \mathbb{R}^n in the SMS influence conserved, \mathbb{Z}^n contain FDMs still boyand observation (2-Loop contains) $W[−]$ γ ℓ_i ζ ℓ_j

cLFV, LNV, lepton EDMs, ...: observation of SM-forbidden leptonic modes ⇒ Discovery of New Physics! (possibly before direct signal @ LHC)

 U_{ik} ν_L U_{ji}^*

jk

Lepton flavours: from ν oscillations... bin property of the same of th

A.M. Teixeira, LPC Clermont 3

Amazing prospects for NP searches - cLFV! τ → *β***.1** *n* 2¹ **b**_l₂ *n 2¹ b*₂ *n 2¹ d*₂ *n 2¹ d²* <u>**D** searches - cl FVI cons</u> **τ > αισιους την:** Μπο

Amazing prospects for NP searches - cLFV! cars **τ →** *β***.1** *n* 2¹ **b**_l₂ *n 2¹ b*₂ *n 2¹ d*₂ *n 2¹ d²* **τ > αισιους την:** Μπο τ **+ ρ** ε 1² × 1⁰ × 1⁰ × 10−8 *βelle 2011* [60] **Belle 2011** [60] **Belle 2011** [60] **Belle 2011** [60] **Belle 2011**

A.M. Teixeira, LPC Clermont 3 es were also as well a

Science Phys. Proc. 1, 041 (2019)

Strong arguments in favour of New Physics!

Neutrino oscillations: 1st laboratory ("flavoured") **evidence of NP**

- \Rightarrow massive neutrinos and leptonic mixings $U_{\mathsf{PMNS}}^{\alpha i}$
- ⇒ New (Majorana) fields? New sources of CP violation? $\Delta L \neq 0$ and leptogenesis... (?)
- **Open door for cLFV transitions and decays!** ⇒

Observations unaccounted for in the SM:

baryon asymmetry of the Universe, viable dark matter candidate, neutrino oscillations *(and some "tensions"...)*

And a number of **theoretical** caveats...

 Many **hints** and a clear **necessity** of **New Physics... Which** NP model? Realised at which scale Λ_{NP} ?

⇒ Unique opportunities to search for NP in the lepton sector via cLFV first characterisation of New Physics (scale, interactions) - **EFT approach**; exploring connections to ν mass generation! (among many other possible BSM!)

μ

NP

New Physics EFT quests with (muon) cLFV

A.M. Teixeira, LPC Clermont

EFT approach to New Physics

Derive the new "effective" interactions (vertices, ...), and compute contributions to observables Agnostic approach, allowing to generically parametrise NP effects on observables forbidden in SM and/or observables suggesting deviations from SM SML bservables forbidden in SM and

$$
\mathscr{A} \sim \mathscr{A}\left(\frac{\mathscr{C}^{6}}{\Lambda_{\text{NP}}^{2}}\right) + \cdots
$$
\n
$$
\mathscr{A} \sim \mathscr{A}^{\text{SM}} + \mathscr{A}\left(\frac{\mathscr{C}^{6}}{\Lambda_{\text{NP}}^{2}}\right) + \cdots
$$
\n
$$
\Rightarrow \text{master SM prediction!}
$$

lj Nj

EFT approach to New Physics

Cast current data (limits, ...) in terms of \mathscr{C}_{ij}^6 and $\Lambda_{\sf NP}^2$ and attempt at **inferring info** on the **dominant operator**, and **scale of NP** ⇒ Beyond (V – A) structure? New vector/axial, (pseudo)scalar or tensor currents? Flavour violation beyond SM flavour paradigm? \mathbf{P} and \mathbf{P} ri olat $\overline{}$ *riolation beyond bin navour pa* $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

⇒ But many unknowns: minimal assumptions must be made, e.g. particularly the control of

lj Nj

"natural"
$$
\Lambda_{\text{NP}} \rightarrow \text{constraint } \mathcal{C}_{ij}^6
$$

"natural" $\mathcal{C}_{ij}^6 \approx 1 \rightarrow \text{hint on } \Lambda_{\text{NP}}$

The probing power of flavour & CPV the SM needs to be extended in order to become a natural theory. The underlying nature of CP violation, which is at the heart of many open questions, de-In addition, it is also an essential ingredient to generate the observed baryon asymmetry (assuming baryogenesis). From a practical perspective, it is one of the main driving forces behind the present experimental efforts, especially in the neutrino sector. Finally, dark matter itself

 \mathbf{r} **SM** interpreted as a low-energy limit of a (complete, yet unknown) NP model suming baryong baryong baryong \mathbf{f} is one of the main driving forces behind for the main driving forces behind for $t\Rightarrow$ model-independent, effective app may have flavour structure, and a true understanding of flavour would then require an interdis-The progress in understanding the above fundamental questions can be made through a ⇒ Model-independent, effective approach (EFT) and forces is explored, or indirectly by making precise measurements of \mathbf{M} for even SM for even SM for

serves special mention. On the one hand, the combination of the discrete symmetries C, P and T is essential to the formulation of quantum field theory itself. On the other hand, CP viola-

$$
\mathscr{L}^{\text{eff}} = \mathscr{L}^{\text{SM}} + \sum_{n \geq 5} \frac{1}{\Lambda^{n-4}} \mathscr{C}^n(g, Y, \dots) \mathscr{O}^n(\ell, q, H, \gamma, \dots)
$$

Cast current data in terms of \mathscr{C}_{ij}^6 and $\Lambda_{\textsf{NP}}\colon \mathscr{C}_{ij}^6\approx 1 \Rightarrow$ bounds on $\Lambda_{\textsf{NP}}$ higher energies. The expected experimental progress, especially with regards to the indirect Cast current data in terms of \mathscr{C}^0 and Λ_{λ} $\frac{1}{2}$ case the NP particles are the energy released in a given experiment, the set of $\frac{1}{2}$ \int **Post** σ *O*(5) +Â*a* ^L2*O*(6) *^a* ⁺*··· .* (5.1)

ciplinary exploration. As a side benefit, the present and planned flavour experiments are often, the planned f

EFT approach to New Physics: lepton flavours

 \Rightarrow <code>cLFV</code> data to constrain \mathscr{C}_{ij} and/or infer sensitivity of process to large sets of \mathscr{C}_{ij}

 \Rightarrow **Hints on** $\Lambda_{\sf NP}$ (and on **properties** of new states & nature of couplings)

l,

Deceptively simple task... different new physics scales, numerous operators! Technically very involved, *even if no "SM background"...*

Muon cLFV: EFT approach to New Physics

Cast current data (limits, ...) in terms of \mathscr{C}_{ij} and $\Lambda_{\sf NP}\!\!$: cLFV operators ($\mathscr{O}^6)$ C and C and C and C

 $\mathscr{L}^{\mathsf{eff}} = \mathscr{L}^{\mathsf{SM}} +$ $\mathscr{C}_{5}\mathscr{O}^{5}$ Λ lnv $(m_{\nu}) +$ ${\mathscr{C}_6}^{66}$ Λ^2_CLFV $\mathscr{L}^{\text{eff}} = \mathscr{L}^{\text{SM}} + \frac{\sigma_5 \sigma}{\Delta_{\text{DM}}}(m_\nu) + \frac{\sigma_6 \sigma}{\Delta^2}(m_\alpha \leftrightarrow \ell_\beta) + \dots$ − + − −4 $-\frac{\sigma_6 \sigma}{\Lambda^2}$ $(\ell_\alpha \leftrightarrow \ell_\beta) + \ldots$

 \sim Challenging tasks in the mixing effects...

Simple *"one-at-a-time"* **limits:**

\Rightarrow BR($\mu \rightarrow e\gamma$) depends on dipole C_D

 \mathcal{S}^{\prime}

ij

 μ e

(but mixing effects from RGE running and loop contributions render it **also sensitive** to scalar/tensor/vector contributions,

even for $q\bar{q}$ operators)

Unexpected findings!

e

r ^e

NP

g

 \ddag

^e NP

 μ e

[Crivellin et al, 2017 (courtesy of M. Pruna)]

Include as many observables & operators as possible!

(e.g. *μeγγ* contact interactions, angular observables in polarised *μ* → 3*e* decays, ...)

in and inferred sensitivity of a process to C6

[Davidson et al, 2007.09612] [Bolton, Petcov, 2204.03468]

Muon cLFV: EFT approach to New Physics (CNT)

interactions (
<u>I</u>
Pecent (novel) FFT annroach to muon transitions' where leptonic four-fermion coefficients are much larger or smaller than those with $\frac{1}{2}$ in order with $\frac{1}{2}$ in order than those with $\frac{1}{2}$ in order than those with $\frac{1}{2}$ in order than those with $\frac{1}{2}$ Recent (novel) **EFT** approach to **muon transitions:**

$$
\mathcal{L}_{\mathsf{NP},\ \mathsf{CLFV}}^{\mathsf{eff}} = \frac{1}{\Lambda^2} \Big[C_D (\bar{e} \sigma^{\nu \rho} P_R \mu) F_{\nu \rho} + C_S (\bar{e} P_R \mu) (\bar{e} P_R e) + C_{VR} (\bar{e} \gamma^{\nu} P_L \mu) (\bar{e} \gamma_{\nu} P_R e) + C_{VL} (\bar{e} \gamma^{\nu} P_L \mu) (\bar{e} \gamma_{\nu} P_L e) + C_{\mathsf{N}\text{-light}} \mathcal{O}_{\mathsf{N}\text{-heavy}\perp} \mathcal{O}_{\mathsf{N}\text{-heavy}\perp} \Big]
$$

Muon cLFV: EFT approach & conversion in nuclei *MI***UCII CEI V. EI I** p2 r d˜*r r*˜²⇢(*c*) (˜*r*)*.* (10) The functions *g ^e* , *f ^e* , *g ^µ* , and *f ^µ* are radial parts of the

 \Rightarrow **cLFV data to constrain** \mathscr{C}^6 (and **infer sensitivity** of a process **to operator** \mathscr{O}^6) $\frac{1}{2}$ *N*=*p,n* \bm{V} data to constrain \mathscr{C}^6 (and infer sensitivity of a process to operator \mathscr{C}^6) ensitivity of a process to operator \varnothing)

Fully exploring the potential of atomic (elastic) **muon-electron conversion,** $CR(\mu - e, N)$: Comparatively more involved theoretical approach! *V,X ^e*↵*PX^µ ^N*↵*^N* ⁺ *^C*(*NN*) *A,X e*↵*PXµ N*↵5*N r* and *exploring* the pot data muon oloctron conversion $\text{CD}(u)$ s case components entering Eq. (3) can be obtained in a behavior of μ matching at the new-physics scale and running down the new-physics scale and run newspaper of the new second run of the new second run in the new second run

Explore target-nucleus dependence to distinguish dominant operator (hint on NP model!) group equations. Here, we will take the them to be an arbitrary $\frac{1}{2}$

 0.15

0.20

 [extensive contributions since Kitano et al, 0203110! see Davidson et al, 1810.01884; Heeck et al, 2203.00702, ...; Haxton et al, 2406.12818] where **PL,** are chiral projection operators and the *C* are chiral projection operators lextensive contributions since Kitano et al, 0203110! see Davidson et al, 181

D

 $V^{(n)}$

$$
BR_{SI}(\mu A \to e A) = \frac{32G_F^2}{\Gamma_{\text{capture}}} \left[\left| C_{V,R}^{pp} V^{(p)} + C_{S,L}^{pp'} S^{(p)} \right| \right. \\
\left. + C_{V,R}^{nn} V^{(n)} + C_{S,L}^{nn'} S^{(n)} + C_{D,L} \frac{D}{4} \right|^2 + \{ L \leftrightarrow R \} \right].
$$

X=*L,R*

Here, the primed coecients are defined as *CNN*⁰ **S,** *S***,** *C CNC***_{***N***}** *C***_{***n***}***C_{<i>N***}** *C***_{***n***}** *C*_{*n*} *C*_{*n*} *C*_{*n*} *C*_{*n*} *C*_{*n*} *C*_{*n*} tegrals, modern control of the control of **Overlap integrals: Overlap integrals:** \blacksquare oretical ansatz here. The elementary approximation is more distinguishable at large Z !

[Heeck et al, 2203.00702] $\begin{array}{ccc} \overline{a} & \overline{b} & \overline{c} \\ \overline{c} & \overline{c} & \overline{c} \end{array}$ $\begin{array}{ccc} \bullet & V^{(p)} & & \bullet \\ \bullet & V^{(p)} & & \bullet \end{array}$ heavy elements. Instead, the extracted from the extracted from extracted from extracted from extracted from ex- $\sum_{i=1}^{n} p_i = p_i$ ⇢ can be obtained via spectroscopy in (muonic) atoms $\frac{a}{\alpha}$ and through elastic scattering on elastic scattering on electromage on $\frac{a}{\alpha}$ $\sum_{n=0}^{\infty}$ and the charge distributions, the charge distributions, the charge distribution of \mathbf{v} bution ⇢(*c*) , for which numerous data tables exist \mathcal{S} . The set of \mathcal{S} $\mathcal{S} = \mathcal{S} = \mathcal{S}$ and $\mathcal{S} = \mathcal{S}$ and $\mathcal{S} = \mathcal{S}$ allow only to ex- $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ the value of the root-mean-square charge radius. $\overline{0}$ and \overline{z} than the proton or charge density and only known for $V^{(p)}$ $S^{(r)}$ $S^{(p)}$ 0 20 40 60 80 0.00 0.05 0.10 Z overlap integrals $[m]$ ស្ថិ_
ស្ថិ_

 1.20 $\overline{ }$

It is dicult to compute nuclear charge distributions

tions for spherically symmetric charge distributions with

₂tter d ^{*n*} disel gle dominant NP contribution placed by fitting a theoretically or phenomenologically etter disentangle dominant NP contributions... but not "experimentally" feasible... the state-of-the-art predictions of ⇢(*n*) for ⁵⁰ $22T$ proton-center distribution unformalized from the 1pF charge distribution units of \mathbf{r} charge distribution units of \mathbf{r} Better disentangle dominant NP contributions... but not "experimentally" feasible...

Muon cLFV: EFT approach & conversion in nuclei

 \Rightarrow **cLFV data to constrain** \mathscr{C}^6 (and **infer sensitivity** of a process to operator \mathscr{O}^6)

Comparatively more involved theoretical approach! Fully exploring the potential of atomic (elastic) muon-electron conversion Γ R(μ \mathbf{r} iddic \mathbf{r} , indon electron conversion, on \mathbf{r} t ions. Our results allow tracking the nucleus-dependence dependence dependence dependence dependence dependence dependence dependence dependence dependence de production de production de production de production de prod Fully exploring the potential of atomic (elastic) **muon-electron conversion,** $CR(\mu - e, N)$:

Explore target-nucleus dependence to distinguish dominant operator (hint on NP model!)

entity of the number of the discrimination of the discrimination of $\frac{1}{2}$ [extensive contributions since Kitano et al, 0203110! see Davidson et al, 1810.01884; Heeck et al, 2203.00702, ...; Haxton et al, 2406.12818]

prepare choice of future ta In the advent of an observation (@ Mu2e, COMET \rightarrow using Aluminium targets) $\frac{1}{2}$. prepare choice of future targets! Largest complementarity with respect to Al? θ_{Al}

- \blacksquare Heavier puclei $(\Delta \sqcup \neg \mathsf{Pb})!$ and feasible $d = \frac{d}{d} \left(\frac{d}{d} \right)$ (pulsed beams) - **Heavier nuclei** (Au, Pb)! ... not feasible...
- $t = \text{Among experimental-friand} \quad 7 < 25 \text{ tar}$ Among experimentation cha - Among experimental-friendly $Z \leq 25$ targets

Further input in the total up to the total up to the total up to the total contribution of t several funcordination good, candidates Li-7, Ti-50, Ti-49, Cr-54, .., V-51 several (theoretically good) candidates

ACKNOWLEDGEMENTS

 \rightarrow 1.1-7 and/or V-51 \cdot proforable "second \rightarrow matrix. **Li-7 and/or V-51 :** preferable **"second" targets** ⇒ $\mathsf{post}\ \mathsf{CR}(\mu-e,\mathsf{Al})\ \mathsf{observation}$

Muon cLFV: EFT approach & conversion in nuclei

 \Rightarrow **cLFV data to constrain** \mathscr{C}^6 (and **infer sensitivity** of a process to operator \mathscr{O}^6)

Fully exploring the potential of atomic (elastic) **muon-electron conversion,** $CR(\mu - e, N)$: \mathcal{A} nd of its lepton number violating counterpart, $\boldsymbol{\mu}^- + (\boldsymbol{A},\boldsymbol{Z}) \rightarrow e^+ + (\boldsymbol{A},\boldsymbol{Z}-\boldsymbol{2})^{(*)}$ A **unique connection** between **LNV** (in association with Majorana nature and possibly,

neutrino mass generation) and **cLFV**

 $μ[−] − e[−]$ conversion: coherent process, single nucleon, nuclear ground states $\mu^- - e^+$ conversion: 2 nucleons ($\Delta Q = 2$), possibly excited final state

From a theoretical point of view, not straightforward!

- Higher-dimension operators in $\mathscr{L}^{\textsf{eff}}$ (dim 6, 10, 14...) ϵ ϵ
- Nuclear matrix elements extremely hard to compute!

$$
\Gamma_{\mu e}^{\text{LNV}} \approx \frac{G_F^4 g_A^4}{32\pi^2} \left| \frac{m_e^2 m_\mu^2}{R^2} \right| F(Z - 2, E_e) \left| \frac{1}{\sqrt{2\pi}} \right| \frac{d^2 (u^2 - e^+)}{R^2}
$$

(only two $\mathscr{M}^{(\mu^-,e^+)}$ known, for Ti-48...)

[Domin et al, 0409033; Simkovic et al, 0103029]

⇒ Very hard to draw implications... **Must tackle NME!**

→ **NGC Clerment** <u>n istra muse caeme</u>

Tau cLFV: (semi-) leptonic modes

Flavour violating tau decays: comparatively **large number** of modes

Leptonic (radiative, three-body) as well as semi-leptonic (light mesons, 2- and 3-body)

- \Rightarrow theoretically much more involved (scales, hadronisation, ...)
- \Rightarrow larger set of (tree-level) contributing operators (e.g. numerous $qq\ell\ell$, gluon, ...)!
- more challenging to **disentangle** operator dominance... *(even @ tree level!)* ⇒

Relle II limits on relevant coefficients (and NP scales level. **Overview of Belle II limits** on relevant coefficients (and NP scales) for **cLFV tau decays**

cLFV at higher-energies: spinning operators \mathbf{e} \mathbf{e} m me 2,3 $e^{\int \mathbf{F} \mathbf{V} \cdot d\mathbf{r}}$

Albeit leading to **formally different transitions**, the same leptonic and semi-leptonic operators can be at the origin of flavour violating transitions in very distinct contexts operators can be at the origin of flavour violating transitions in very distinct contexts $\overline{1}$ $\overline{}$ ep

> Consider a 4-fermion quark-lepton operator ($q_i \, q_j \, \ell_\alpha \, \ell_\beta$), with $i = j, \alpha \neq \beta$ One operator can source **rare LHC cLFV decays** (rich "flavour" content!), n
N

it

 $\alpha \alpha \beta$ $pp \rightarrow \ell_{\alpha} \ell_{\beta}$ $pp \to \ell_{\alpha} \ell_{\beta}$

\mathbf{e} \mathbf{e} we cLFV at higher-energies: s m µ µ ² µ **cLFV at higher-energies: spinning operators**

Albeit leading to **formally different transitions**, the same leptonic and semi-leptonic^t operators can be at the origin of flavour violating transitions in very distinct contexts n u
L

Consider a 4-fermion quark-lepton operator ($q_i \, q_j \, \ell_\alpha \, \ell_\beta$), with $i = j, \alpha \neq \beta$ One operator can source **rare LHC cLFV decays** (rich "flavour" content!), cLFV semileptonic decays, muon-electron conversion, ... f_i f f_k $\frac{q}{d}$ $\left| \frac{l \beta, v_{\beta}}{v_{\beta}} \right|$ $\frac{1}{2}$ merator $\left(\frac{a}{2} \mathcal{A} \right)$ with $i = 1$ Cracor $(q_i q_j e_\alpha e_\beta)$, with i CLF V decays (ficii fiavour co e extending to the construction of the constant of the constan \mathbf{H}

 $\frac{1}{\sqrt{2}}$

µ µ ² µ $\frac{1}{2}$ druftez et al, 2403.09772] [recent review, see Fernandez-Martinez et al, 2403.09772]

me 2,3

it

we

 u_i and u_i

 $9j$ $\ell_{\beta,\psi_{\beta}}$

Bad for the second second second second

Meson decays: cLFV and more

[recent study - Calibbi et al, 2207.10913]

and by dimension-6 4-lepton (4`) operators

 $Λ$ [TeV]

Lepton flavours @ high Tera-Z (chi

For $Z \rightarrow \mu e$ better sensitivity of **dedicated (low-energy) cLFV searches**

 $\mu \rightarrow eee, \, \mu - e$ conversion

CNTS

 \ket{I}

Lepton flavours @ high Tera-Z (chi

CNTS

 \ket{I}

And at electron-ion colliders (EIC)

In general, less ambitious probing power (compared to **LHC**, and especially to dedicated **low-energy** experiments)

L Cirigliano et al, 2102.106176

After EFT - New Physics models of cLFV!

Effective approach: *first characterisation* (mostly constraints & hints) on scale of NP and nature of new interactions (couplings and currents)

Ultimately we do *need to unveil the model of NP at work!* ⇒

Although **oscillation data** (massive neutrinos) do **imply cLFV** *(direct consequence)*, **cLFV** can be **independent** of mechanism of neutrino mass generation

Supersymmetry: unconstrained models (beyond cMSSM, pMSSM), new sources of LFV Rp-violating SUSY

Leptoquark models (extended field content); Extra-dimensions; extended Higgs sectors, ...

After EFT - New Physics models of cLFV!

Effective approach: *first characterisation* (mostly constraints & hints) on scale of NP and nature of new interactions (couplings and currents)

Ultimately we do *need to unveil the model of NP at work!* ⇒

Although **oscillation data** (massive neutrinos) do **imply cLFV** (direct consequence), **cLFV contributions** fully **independent** of mechanism of neutrino mass generation

Here: focus on **SM extensions** aiming at addressing **neutrino mass generation!**

Not always trivial to establish connection between ${\mathscr C}_5, \,{\mathscr C}_6$ (and ${\mathscr C}_7$)

cLFV : powerful means to test/falsify models of NP (m_{ν}) *(examples ahead!)*

New Physics paths to cLFV: seesaw models of neutrino mass generation

A.M. Teixeira, LPC Clermont

New Physics and m_{ν} : **cLFV**

Neutrino masses (brief "how to"...)

Most minimal possibility: **SM extended** by **Dirac RH neutrinos** (impose **L conservation**)

 \Rightarrow $\mathscr{L}_{m_{\nu}} \thicksim -Y^{\nu}L\tilde{H}\nu_{R}$ but tiny Yukawa couplings, $\mathscr{O}(10^{-13})$

! Extend the SM to accommodate ν^α " ν^β : assume most minimal extension SM^m^ν

γ

No impact for cLFV; GIM-like suppression due to smallness of *mνi* $BR(\mu \to e\gamma) \sim 10^{-54}$ and similarly for other observables... $\mathcal{O}(\mathcal{O}_\mathcal{A})$ of SM- $\mathcal{O}_\mathcal{A}$ modes and or tensions with data and data and data

New Physics and (Majorana) m_{ν} **: cLFV**

Neutrino masses (brief "how to"...)

Most minimal possibility: **SM extended** by **Dirac RH neutrinos** (impose **L conservation**)

 \Rightarrow $\mathscr{L}_{m_{\nu}} \thicksim -Y^{\nu}L\tilde{H}\nu_{R}$ but tiny Yukawa couplings, $\mathscr{O}(10^{-13})$

! Extend the SM to accommodate ν^α " ν^β : assume most minimal extension SM^m^ν

No impact for cLFV; GIM-like suppression due to smallness of *mνi* cLFV possible... but not observable!! BR(µ → eγ) ∼ 10−⁵⁴

Allow for L violation: realisations of Weinberg operator! The Livin Mechanism of **Weinberg** operator!

 \mathbf{s}_c seesaw mechanism: explain small v masses with "natural" couplings with "natural" co

⇒ discovery of New Physics! Possibly before LHC!

 $\mathscr{L}^5_{m_\nu} \sim$ \mathscr{C}^5 $\mathbf{\Lambda}_{\mathsf{NP}}$ $(\bar{L}^c H H L)$! "

BRs, etc

 W^-

 ℓ_i ζ ℓ_j U_{ik} ν_L U_{ji}^*

γ

jk

 \sim Seesaw mechanism: explain small v masses with "natural" couplings with "natural" couplings

Type I seesaw and cLFV

Mechanisms for neutrino mass generation: delicate "balance" between **mechanisms**

sources of flavour violation and **masses of new propagators**

→ account for **oscillation data (observation!) Type I Seesaw: extend the SM via (Majorana) sterile fermions** $\mathbb{Z}_{\mathbb{Z}} \rightarrow \mathbb{Z}^{\mathbb{Z}}$ an enlarged spectrum \rightarrow extended mixings wajorana) ster $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ Y^{ν} Y^{ν} $M_{\pmb{R}}$ νR νR H H ν_L ν_L $+$ $+$ \mathcal{L} (scalar triplet) \mathcal{L} (scalar triplet) \mathcal{L} (fermion triplet) \mathcal{L} (fermion triplet) \mathcal{L} \mathcal{S} seesaw mechanism \mathcal{S} Type III \mathbb{Z}^n of \mathbb{Z}^n \mathbb{Z}^n + large rates ⇒ sizable y and on the mass of the mass of the mass of the mass of the $($ \sum_{i}^{SUS} \sum_{i}^{SUS} $\sum_{i}^{N_{ij}}$ $m_{\nu} \sim (Y^{\nu}v)$ T_{\perp} ¹ *MR* $\sim (Y^{\nu}v)^{T}$ ¹/₁₄ $(Y^{\nu}v)$ $\sqrt{n} \frac{1}{(V^{\nu})}$! Spectrum and mixings: ^m^ν ≈ −v²^Y ^T \mathbf{r} mixing $\approx U_{\text{pure}}$ $\boldsymbol{U} =$ $\left(\begin{array}{cc} \pmb{U_{\nu\nu}} & U_{\nu N} \ U_{N\nu} & U_{NN} \end{array}\right)$ US = (1 − e)UPMNS Non-unitary leptonic mixing UNIX non-unitary leptonic mixing UNIX non-unitary leptonic mixin
UPMNS Non-unitary leptonic mixing UNIX non-unitary leptonic mixing UNIX non-unitary leptonic mixing UNIX non-u H^{H} l Leptonic mixing $\approx U_{PMNS}$ active-sterile mixings ($\theta \propto m_D^\dagger M^{-1}_R$) $U^T \mathcal{M}_\nu^{6 \times 6} U = \text{diag}(m_{\nu_i}) \quad U = \begin{pmatrix} U \nu \nu & U \nu N \\ & & U \nu N \end{pmatrix}$ Y^X \leftarrow $\cdots \cdots$ m_{ν} $\cdots \cdots \cdots \cdots$ M_X Y^{ν} \longrightarrow H νL $\frac{1}{\sqrt{1-\epsilon}}$ $\ddot{\mathbf{S}}$

new [≈]¹⁰ [⇒] ^M ¹³−¹⁵

new ≈ 1013−15 Gev. 1013−15 Gev.

cLFV

BRs, etc \blacktriangleright \blacktriangleleft

A.M. Teixeira, LPC Clermont 19 " Fermionic Section of the [∼] ^O(1) ^ν ^Y (1) ^ν [⇒] ^Mnew [≈] ¹⁰ [⇒]^M ¹³−¹⁵

 $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$

 ν_L

 $m_{\nu} \sim (Y^{\nu}v)$

 \mathbb{Z}^n of \mathbb{Z}^n \mathbb{Z}^n

 Y^{ν}

 $\nu_L \sim Y^{\nu}$... H

νR

νR

 Y^{ν}

 $M_{\pmb{R}}$

 T_{\perp} ¹

 $\sim (Y^{\nu}v)^{T}$ ¹/₁₄ $(Y^{\nu}v)$

MR

H

 $\frac{1}{\sqrt{1-\epsilon}}$

νL

 Y^{ν} \longrightarrow H

 $+$ $+$

Type I seesaw and cLFV

Mechanisms for neutrino mass generation: delicate "balance" between **mechanisms sources of flavour violation** and **masses of new propagators** → account for **oscillation data (observation!)**

> **Type I Seesaw: extend the SM via (Majorana) sterile fermions** wajorana) ster

> > + large rates ⇒ sizable y v

active-sterile mixings: $\nu_x - \nu_y$ $\overline{\mathbf{a}}$ and $\overline{\mathbf{b}}$ (see Fig. singlet) $\overline{\mathbf{b}}$ (fermion triplet) $\overline{\mathbf{b}}$ (fermion triplet) $\overline{\mathbf{b}}$ \mathcal{S} seesaw mechanism \mathcal{S} Type III $-\nu_R$
 $\Rightarrow \theta \approx \mathcal{O}(m_D^{\dagger} M_R^{-1})$ $\frac{1}{2}$
active-sterile mixings: $\nu_x - \nu_y$ active-sterile mixings: *ν^L* − *ν^R* $\Rightarrow \theta \approx \mathcal{O}(m_D^{\dagger} M_R^{-1})$

 \mathbf{a} $\sum_{s}^{3+n_s}$ \overline{a} $\sum_{i=1}^{\infty} a_i$ $\propto (1 - \eta) U_{\text{PMNS}}$ $\overline{X} = \overline{X}$ v_{i} $\frac{v_{i}}{z}$ $\frac{v_{i}}{z}$ $\frac{v_{i}}{z}$ $\frac{v_{i}}{z}$ \tilde{U} _{prop} $= (1 - n)U$ _{prop}es $v = \frac{1}{2}a\theta^{\dagger}$ no no Vj $\frac{1}{2}$ ∝ 3+*ns* ∑ *j*=1 *Uα^j* ∝ 3+*ns* ∑ *i*,*j*=1 ∑ *ρ* $U_{\dot{\iota}\rho}^{\dagger}U_{\rho j}$ $\propto (1-2\eta)U_{\text{PMNS}}$ $\tilde{U}_{PMNS} = (1 - \eta)U_{PMNS}$; $\eta =$ 1 2 *θθ*†

new ≈ 1013−15 Gev. 1013−15 Gev.

vino de la construcción de la cons
En la construcción de la construcc

new [≈]¹⁰ [⇒] ^M ¹³−¹⁵

 Y^X \leftarrow $\cdots \cdots$ m_{ν} $\cdots \cdots \cdots \cdots$ M_X

 ϵ

cLFV

 $\overline{\mathrm{BRS}}$, etc \blacktriangleright \blacktriangleleft

A.M. Teixeira, LPC Clermont 19 Elermont

Type I seesaw and cLFV

Mechanisms for neutrino mass generation: delicate "balance" between **mechanisms sources of flavour violation** and **masses of new propagators** → account for **oscillation data (observation!)**

> **Type I Seesaw: extend the SM via (Majorana) sterile fermions** wajorana) ster

active-sterile m $\frac{1}{2}$ $\Rightarrow \theta \approx \mathcal{O}(m_D^{\dagger} M_R^{-1})$ active-sterile mixings: *ν^L* − *ν^R*

 $w = \frac{1}{2}$

 Y^X \leftarrow $\cdots \cdots$ m_{ν} $\cdots \cdots \cdots \cdots$ M_X

cLFV

 ${\rm BRs.\;et}$ \blacktriangleright \blacktriangleleft

" LFV observables: depend on powers of Y να με το P να με το V να
" LFV observables: depend on powers of Y να με το V να
"

Type I seesaw and cLFV

Mechanisms for neutrino mass generation: delicate "balance" between **mechanisms**

sources of flavour violation and **masses of new propagators** → account for **oscillation data (observation!) Type I Seesaw: extend the SM via (Majorana) sterile fermions** $\mathbb{Z}_{\mathbb{Z}} \rightarrow \mathbb{Z}^{\mathbb{Z}}$ an enlarged spectrum \rightarrow extended mixings **If light neutrino masses** generated by ■ "natural" new physics ⇒ very high energy NP scale $Y^{\nu} \sim \mathcal{O}(1)$ *M_R* ~ 10^{14–16} GeV \sqrt{N} wajorana) ster $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ Y^{ν} Y^{ν} $M_{\pmb{R}}$ νR νR H H ν_L ν_L $+$ $+$ Σ^R $\mathbf{F} = \mathbf{F} \mathbf$ "Seesaw mechanism" Type II Type III \mathbb{Z}^n of \mathbb{Z}^n \mathbb{Z}^n + large rates ⇒ sizable y \sum_{i}^{SUS} \sum_{i}^{SUS} $\sum_{i}^{N_{ij}}$ $m_{\nu} \sim (Y^{\nu}v)$ T_{\perp} ¹ *MR* $\sim (Y^{\nu}v)^{T}$ ¹/₁₄ $(Y^{\nu}v)$ $\mathbb{E}[Y^{\nu}(\mathcal{Y}^{\nu})]$ and $\mathcal{Y}^{\nu} \sim \mathcal{O}(1)$ $M_{\nu} \sim 10^{14-16}$ GeV $\frac{M_R}{}$ $\frac{M_R}{}$ $\frac{M_R}{}$ N_{R} Leptonic mixing $\approx U_{PMNS}$ ν U = diagonalistic de la ministra de la ministra
De la ministra de la $\boldsymbol{U} =$ $\left(\begin{array}{cc} \pmb{U_{\nu\nu}} & U_{\nu N} \ U_{N\nu} & U_{NN} \end{array}\right)$ (**unitary** to very good approximation) $H = \frac{1}{2}$ n egligible active-sterile mixings ($\theta \propto m_D^\dagger M_R^{-1})$ $U^T \mathcal{M}_{\nu}^{6\times6} U = \text{diag}(m_{\nu_i}) \hspace{3mm} U = \left(\begin{array}{cc} U \nu \nu & U \nu N \ I N \nu N \end{array} \right)$ (unitary to very good approximation) Y^X \leftarrow $\cdots \cdots$ m_{ν} $\cdots \cdots \cdots \cdots$ M_X cLFV 3Rs, etc \blacktriangleright \blacktriangleleft Y^{ν} \longrightarrow H νL $\frac{1}{\sqrt{1-\epsilon}}$ ses gen $\ddot{\mathbf{S}}$ $\sim 10^{14-16}$ GeV Σ^R Z
Z

⇒ Decoupled new physics! No contributions for cLFV observables,

new ≈ 1013−15 Gev. 1013−15 Gev.

new [≈]¹⁰ [⇒] ^M ¹³−¹⁵

. Rich phenomenology at high-intensity/low-energy at high-intensity/low-energy and at colliders \mathbb{R}^n

no resonance within collider reach...

 $\overline{}$ is a large rate $\overline{}$ is a sizable $\overline{}$ v $\overline{}$ is a sizable $\overline{}$

A.M. Teixeira, LPC Clermont 21 " Fermionic Section of the [∼] ^O(1) ^ν ^Y (1) ^ν [⇒] ^Mnew [≈] ¹⁰ [⇒]^M ¹³−¹⁵

Type III seesaw and cLFV

Mechanisms for neutrino mass generation: delicate "balance" between **mechanisms sources of flavour violation** and **masses of new propagators** ⇒ account for **oscillation data** (**observation!**) \Rightarrow account for oscillation data (observation!)

new [≈]¹⁰ [⇒] ^M ¹³−¹⁵

new ≈ 1013−15 Gev. 1013−15 Gev.

Type III Seesaw: extend the SM via SU(2) triplet fermions

 \rightarrow extended mixings

 $\frac{1}{2}$ $= \Sigma^+$, Σ^0 , Σ \mathscr{L} Type III ⊃ $v Y_{\Sigma} \Sigma^+ e^- + v Y_{\Sigma} \Sigma^0 \nu + M_{\Sigma} \bar{\Sigma} \Sigma$ $\overline{\mathcal{A}}$ and $\overline{\mathcal{A}}$ is completed in the singlet $\overline{\mathcal{A}}$ of $\overline{\mathcal{A}}$ ($\overline{\mathcal{B}}$ $\overline{\mathcal{A}}$ $\overline{\$ $(Y_{\Sigma}v)$ Fermion-triplet mixings: $\Sigma^{0} - \nu$ and $\Sigma^{+c} - \ell^{-c}$ $\Sigma = \Sigma^{+}, \Sigma^{0}, \Sigma^{-}$ $\Rightarrow \theta \approx \mathcal{O}(vY_{\Sigma}M_{\Sigma}^{-1})$

A.M. Teixeira, LPC Clermont 21 " Fermionic Section of the LPC Clermont

∆

w and c LFV $\qquad \qquad \text{cm}$ **Type III seesaw and cLFV** Vj

new ≈ 1013−15 Gev. 1013−15 Gev.
A.M. Teixeira, LPC Clermont 21

∆

Type III seesaw and cLFV

Mechanisms for neutrino mass generation: delicate "balance" between

A.M. Teixeira, LPC Clermont 21 " Fermionic Section of the [∼] ^O(1) ^ν ^Y (1) ^ν [⇒] ^Mnew [≈] ¹⁰ [⇒]^M ¹³−¹⁵

 $m_{\nu} \sim (Y_{\Sigma} \nu)$

 ν_L

 ν_L

•

 cLFV

 μ

H

H

∆

 $π = π$ (fermion triplet) $λ = π$

"Seesaw mechanism" Type I Type II Type III

vino no no Type in seesaw and CLF v vino no no e iii seesaw and CLFV extended to \mathbf{C} **Type III seesaw and cLFV**

Mechanisms for neutrino mass generation: delicate "balance" between **mechanisms sources of flavour violation** and **masses of new propagators** ⇒ account for **oscillation data** (**observation!**) ⇒ account for oscillation data (observation!)

Type III Seesaw: extend the SM via SU(2) triplet fermions \overline{G} w: extend the SM via SU(2) triplet fermions
 \rightarrow an enlarged spectrum ^M ⁿ I ^µ

 \rightarrow extended mixings \mathbb{R}^n \mathbb{R}^n \mathbb{R}^n \mathbb{R}^n an enlarged spectrum

 $\frac{1}{2}$ $= \Sigma^+$, Σ^0 , Σ \mathscr{L} Type III ⊃ $v Y_{\Sigma} \Sigma^+ e^- + v Y_{\Sigma} \Sigma^0 \nu + M_{\Sigma} \bar{\Sigma} \Sigma$ $\overline{\mathcal{A}}$ and $\overline{\mathcal{A}}$ is completed in the singlet $\overline{\mathcal{A}}$ of $\overline{\mathcal{A}}$ ($\overline{\mathcal{B}}$ $\overline{\mathcal{A}}$ $\overline{\$ $(Y_{\Sigma}v)$ Fermion-triplet mixings: $\Sigma^{0} - \nu$ and $\Sigma^{+c} - \ell^{-c}$ $\Sigma ~=\Sigma^{+}, \Sigma^{0}, \Sigma^{-}$ $\Rightarrow \theta \approx \mathcal{O}(vY_{\Sigma}M_{\Sigma}^{-1})$ α $\mathscr{L}_{\text{Type III}} \supset v Y_{\Sigma} \Sigma^{+} e^{-} + v Y_{\Sigma}$ \mathscr{L} Type III $\supset \nu Y_{\Sigma} \Sigma^{+} \ell^{-} + \nu Y_{\Sigma} \Sigma^{0}$

 $\frac{1}{\alpha}$ is $\frac{1}{\alpha}$

e

new ≈ 1013−15 Gev. 1013−15 Gev.

new [≈]¹⁰ [⇒] ^M ¹³−¹⁵

 Y^{Σ} and H

 $(Y_{\Sigma}v)$

νL

H

H

.

 T_{\perp} ¹

 M_{Σ}

 M_{Σ}

 \star

 Σ_R

 Σ_R

 Y^{Σ}

µ

 Y^{Σ}

e

Type III seesaw and cLFV

Mechanisms for neutrino mass generation: delicate "balance" between **mechanisms sources of flavour violation** and **masses of new propagators** ⇒ account for **oscillation data** (**observation!**) \Rightarrow account for oscillation data (observation!)

Type III Seesaw: extend the SM via SU(2) triplet fermions

 \mathbb{R}^n \mathbb{R}^n \mathbb{R}^n \mathbb{R}^n an enlarged spectrum

 \rightarrow extended mixings

→
If light neutrino masses gen ∆ H $\mathsf{atural}^{\mathsf{u}}$ new physics \Rightarrow very high energy NP scale × **Web Thatural"** new physics ⇒ very high energy NP scale $\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$ (see Fig. , fermion triplet) $\frac{1}{\sqrt{2}}$ (see Fig. , fermion triplet) $\frac{1}{\sqrt{2}}$ If **light neutrino masses** generated by $Y_{\Sigma} \sim \mathcal{O}(1)$ *M*_Σ ~ 10^{14–16} GeV

 $\sum_{n=1}^{\infty} \frac{1}{n} \sum_{i=1}^{\infty} \frac{1}{n} \sum_{i=1}^{\infty}$ negligible mixings between active neutrinos

and NP states $(\theta \propto m_{\Sigma}^{\dagger} M_{\Sigma}^{-1})$

" LFV observables: depend on powers of Y να με το P να με το V να
" LFV observables: depend on powers of Y να με το V να
" $\frac{1}{\sqrt{1 + \frac{1}{2}} \cos \theta}$ and on the mass of ⇒ Decoupled new physics! Little contributions for cLFV observables,

new ≈ 1013−15 Gev. 1013−15 Gev.

new [≈]¹⁰ [⇒] ^M ¹³−¹⁵

 ν_L

 Y^{Σ}

H

H

+ large rates ⇒ sizable y v

" Low scale seesaws: rich phenomenology at high-intensities! (and also at LHC)

Fermionic seesaws and cLFV

new [≈]¹⁰ [⇒] ^M ¹³−¹⁵

new ≈ 1013−15 Gev. 1013−15 Gev.

Type II seesaw and cLFV

Tree-body decays @ tree-level...

new [≈]¹⁰ [⇒] ^M ¹³−¹⁵

new ≈ 1013−15 Gev. 1013−15 Gev.

 $\overline{}$

 Y^{ν}

 ν_R

 ν_R

 Y^{ν}

 cLFV

 M_R

•

H

H

 $e, 4$

A.M. Teixeira, LPC Clermont 24 " Fermionic Section of the [∼] ^O(1) ^ν ^Y (1) ^ν [⇒] ^Mnew [≈] ¹⁰ [⇒]^M ¹³−¹⁵

 $\overline{}$

 Y^{ν}

νR

νR

 Y^{ν}

Scalar seesaw and cLFV

Mechanisms for neutrino mass generation: delicate "balance" between

sources of flavour violation and **masses of new propagators**

Type II Seesaw: extend the SM via SU(2) triplet scalars \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} an enlarged spectrum \rightarrow extended mixings A **different scenario:** additional ingredient! ■ "natural" new physics \neq very high energy NP scale $\left|m_{\nu} \sim \frac{I_{\Delta} \mu}{2} \frac{V}{M^2}\right|$ (Smallness of m_{ν} also from (tiny) μ coupling $\begin{array}{ccc} \begin{matrix} 2 & M_{\Delta} \end{matrix} \end{array}$ $\begin{array}{ccc} \begin{matrix} 2 & 1 & 1 \end{matrix} \end{array}$ for "natural" Y_{Δ} and not "too heavy" M_{Δ} via new dynamics at "heavy" scale lullu I<mark>'</mark> M_R H H $\overline{Y_\Delta}$ ∆ μ H H ν_L ν_L + . $*$ M_{Σ} Y^{Σ} Y^{Σ} Σ_R Σ_R H H ν_L ν_L $π = π$ (fermion singlet) $λ = π$ (fermion triplet) $λ = π$ "Seesaw mechanism" Type II Type III $m_{\nu} \sim \frac{\Delta V}{2 M_{\nu}^2}$ and on the mass of the mass of the mass of the mass of the contract of the con \blacksquare Dimension 5 $4 Y_{\Delta} \, \mu \, M_{\Delta}^{-2} \, (\overline{L_L^c} \tilde{\phi}^*) \; (\tilde{\phi}^\dagger L_L)$ Y^{Δ} μ 2 v^2 *M*² Δ **Dimension 5 Dimension 6** $Y_{\Delta} Y_{\Delta}^{\dagger} M_{\Delta}^{-2} (\overline{L_L} \gamma_{\mu} L_L) (\overline{L_L} \gamma^{\mu} L_L)$ [see Abada et al, 0707.4058] **suppression** of **"light neutrino masses"** ⇒ and and the correlated from **contribution to NP effects!** \Rightarrow account for oscillation data (observation!) Y^X \leftarrow $\cdots \cdots$ m_{ν} $\cdots \cdots \cdots \cdots$ M_X 3Rs. e \blacktriangleright \blacktriangleleft • Γ \overrightarrow{H} $\overrightarrow{U_L}$ νR \mathcal{L} $\overline{}$ →

→ Adifferent scenario: additio ∆ H $\overline{\text{atural}}$ new physics \Rightarrow very high energy NP scale × ن
C gh $\begin{array}{ccc} \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ \hline & \mathbb{Z} & M^2_{\Delta} & \end{array}$ $\begin{array}{ccc} \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \end{array}$ for "natural" Y_{Δ} and not "too heavy" M_{Δ} "Seesaw mechanism" Type II Type III Type II
"See Saw Maria Type II Type II Type III Typ **Dimension 5** $4 Y_{\lambda} \mu M_{\lambda}^{-2} (\overline{L_r^c} \tilde{\phi}^*) (\tilde{\phi}^{\dagger} L_r)$ \$ large rates [⇒] sizable ^Y ^ν ⇒ account for **oscillation data** (**observation!**)

new [≈]¹⁰ [⇒] ^M ¹³−¹⁵

new ≈ 1013−15 Gev. 1013−15 Gev.

cLFV

cLFV and the seesaw: peculiar patterns

Seesaw realisations: distinctive expectations for numerous **cLFV observables If observable/measurable cLFV** - what can we learn?

cLFV and the seesaw: peculiar patterns The seesaw mechanism

The seesaw mechanism

Correlation of observables in NP models: peculiar patterns

Seesaw realisations: distinctive expectations for numerous cLFV observables **If observable/measurable cLFV** - what can we learn? T observable/measurable CLFV $\overline{}$ what Call we tearn: via new dynamics at "heavy" scale \prime - what can we learn? $\,$ via new dynamics in $\frac{1}{2}$ stin sti α , explanations for muse small $\mathbb{E}V$ shown via new dynamics case of the scale of th

 \sim Focus on \sim Focus on muon sector. \sim Focus on \sim \sim

The seesaw mechanism

mN !GeV" *m*% \$GeV% **cLFV patterns** reflect the **topology** of contributions associated with the **new mediators** (dipole or Z-dominated, tree vs. loop, ...)

cLFV and the seesaw: peculiar patterns cars The seesaw mechanism vino no no Courrie pecunai paccerno

The seesaw mechanism

Seesaw realisations: distinctive expectations for numerous cLFV observables **If observable/measurable cLFV** - what can we learn? via new dynamics at "heavy" scale \prime - what can we learn? $\,$ via new dynamics in stative time expected in a few mines weight of \mathbf{F} via new dynamics case of the scale of th IN2P3 IN2P3

The seesaw mechanism

cLFV patterns reflect the topology of contributions associated with the new mediators (dipole or Z-dominated, tree vs. loop, ...) ^e 9 .
Ia

no no ben'ny tanàna mandritry ny taona 2008–2014. Ilay kaominina dia kaominina mpikambana amin'ny fivondronan-

Les deux minns

la

cLFV and the seesaw: peculiar patterns

Seesaw realisations: distinctive expectations for numerous **cLFV observables**

⇒ **ratios of observables** to **identify seesaw mediators** & constrain **masses...**

cLFV patterns reflect the **topology** of contributions associated with the **new mediators** (dipole or Z-dominated, tree vs. loop, ...)

[adapted from Calibbi et al, 1709.00294]

Upon **experimental determination** of rates for **cLFV transitions:**

comparison of
$$
\frac{BR(\mu \to 3e)}{BR(\mu \to e\gamma)}\Big|_{\text{exp}}
$$
 with $\frac{BR(\mu \to 3e)}{BR(\mu \to e\gamma)}\Big|_{\text{NP-th}}$

\nProbe NP model at the source at the source of $\frac{CR(\mu - e, N)}{BR(\mu \to e\gamma)}\Big|_{\text{exp}}$ with $\frac{CR(\mu - e, N)}{BR(\mu \to e\gamma)}\Big|_{\text{NP-th}}$

New Physics paths to cLFV: low-scale seesaws

A.M. Teixeira, LPC Clermont

Low-scale models of m_{ν} generation: type I seesaw

Addition of 3 "heavy" Majorana right-handed neutrinos $\nu_{\pmb{R}}$ to the SM but explore considerably lighter range for M_R \quad MeV $\leq M_R \leq 10^{\text{few}}$ TeV and mechanism: explore considerab ighte

After EW symmetry breaking, **6 states** in the neutral lepton spectrum

$$
\mathcal{M}_{\nu}^{6\times6} = \left(\begin{array}{cc} 0 & Y^{\nu} \, v \\ (Y^{\nu})^T \, v & M_R \end{array}\right) \qquad \begin{array}{c} \textbf{3 light neutrinos} & m_{\nu} \approx -\, \nu^2 Y_{\nu}^T M_R^{-1} Y_{\nu} \\ \textbf{3 heavy states} & m_N \approx M_R \end{array}
$$

Enlarged 6×6 mixing matrix U^T M $_{\nu}^{6 \times 6}$ U = diag(m $_{\nu_i}$)

$$
m_{\nu} \sim (Y^{\nu} \nu)^{T} \frac{1}{M_{R}} (Y^{\nu} \nu)
$$
\n
$$
U = \begin{pmatrix} U_{\nu\nu} & U_{\nu N} \\ U_{N\nu} & U_{NN} \end{pmatrix}
$$
\nNon-negligible active-sterile mixings! $(\theta \propto m_{D}^{\dagger} M_{R}^{-1})$
\nNon-unitory leptonic mixing \tilde{U}_{PMNS}

Low-scale realisations of the **Type I seesaw** open door to a **very rich phenomenology** from **cLFV signals**, to collider searches

Similar implications for **low-scale Type III**

(but important direct/indirect constraints due to the *non-singlet nature of new states*...)

Type I (fermion singlet) **Finlarged** 6×6 **r**

Low-scale models of m_{ν} generation: type I seesaw puels of m_ν gener $\overline{}$

Addition of 3 "heavy" Majorana right-handed neutrinos ν_R to the SM $\geq N$ and $\geq N$ but explore considerably lighter range for M_R \quad MeV $\leq M_R \leq 10^{\text{few}}$ TeV and mechanism: explore considerab ighte . Addition of 3 "heavy" Majorana RH neutrinos to SM; MeV " mNi " 10few MeV " mNi " 10 TeV few MeV " mNi " 1 **Example 2 Addition of 3 "heavy" Majorana** right-handed neutrinos ν_R to the SM
but explore considerably lighter range for M_P MeV $\leq M_P \leq 10^{\text{few}}$ TeV \mathbf{U} na right-handed neut iderably lighter range

! Addition of 3 "heavy" Majorana RH neutrinos to SM; MeV " m^Nⁱ " 10few MeV " m^Nⁱ " 10 TeV few MeV " m^Ni" 10 TeV few

Low-scale realisations of the **Type I seesaw: very rich phenomenology** \Rightarrow **cLFV signals** (more promising than collider searches) \parallel \blacksquare ************* $\begin{bmatrix} \nu_L & \cdots & \cdots & \cdots \\ \nu_R & \mu_R & \cdots & \cdots \end{bmatrix}$ Low-scale realisations of the Type I seesaw: very rich phenomenology Σ^R $v_L \sim y$ V is H and V at V signals (more promising enarr colliders) $P_L \sim P$ ^v \sim \sim \sim \sim \sim \sim \sim \rightarrow CLT V signals (*more promising chan*

A.M. Teixeira, LPC Clermont 26

 $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$

 ν_L

 ν_L

 Y^{ν}

νR

νR

 Y^{ν}

 M_R

H

H

CNTS

▶ Variants of type I seesaw aiming at a **natural** realisation of a low-scale m_ν mechanism

Addition of **two new species** of **fermionic gauge singlets**

 n_R right-handed neutrinos ν_R (L $_{\nu_R}$ $= 1$) and n_X extra sterile states X (L $_X$ $= -1$)

$$
\mathcal{L}^{(3,3)}_{\text{ISS}} = -Y^{\nu}\bar{L}\,\tilde{H}\,\nu_R - M_R\,\bar{\nu}_R^c\,X - \frac{1}{2}\,\mu_X\bar{X}^cX
$$
\nlepton number violating!

[Mohapatra and Valle, '86]

$$
\mathcal{M}_{\text{ISS}}^{9\times 9} = \left(\begin{array}{ccc} 0 & Y_{\nu}v & 0 \\ Y_{\nu}^{T}v & 0 & M_{R} \\ 0 & M_{R} & \mu_{X} \end{array}\right) \Rightarrow \left\{\begin{array}{ccc} 3 \text{ light } \nu : m_{\nu} \approx \frac{(Y_{\nu}v)^{2}}{(Y_{\nu}v)^{2} + M_{R}^{2}} \mu_{X} \\ 3 \text{ pseudo-Dirac pairs} : m_{N} \pm \approx M_{R} \pm \mu_{X} \end{array}\right.
$$

$$
m_{\nu} \sim (Y^{\nu} \nu)^{T} \frac{\mu_{X}}{M_{R}^{2}} (Y^{\nu} \nu)
$$

Interplay of two scales driving smallness of m_{ν} : M_{R} and μ_{X} For **natural values** of $Y^{\nu} \sim \mathcal{O}(1)$ comparatively "light" heavy spectrum ($\Lambda_{\textsf{EW}} \leftrightarrow$ TeV) for $\frac{1}{2}$ small values of μ_X (around eV - keV) For natural values of $Y^{\nu} \sim \mathcal{O}(1)$

Natural ('t Hooft criterium) since B-L conservation restored when $\mu_X \rightarrow 0$! 10-20 10-20 criterium) since B-L conservat \overline{t} |
|-
| ion rocl 10-6 DUNE

Symmetry protected "smallness" of m_ν *- approximate LNC* itry nrotected "smallness" of *m* atoctod "cmallnoss" of m at

▶ Variants of type I seesaw aiming at a **natural** realisation of a low-scale m_ν mechanism

Addition of **two new species** of **fermionic gauge singlets**

 n_R right-handed neutrinos ν_R (L $_{\nu_R}$ $= 1$) and n_X extra sterile states X (L $_X$ $= -1$)

$$
\mathcal{L}^{(3,3)}_{\text{ISS}} = -Y^{\nu}\bar{L}\,\tilde{H}\,\nu_R - M_R\,\bar{\nu}_R^c\,X - \frac{1}{2}\,\mu_X\bar{X}^cX
$$
\nlepton number violating!

[Mohapatra and Valle, '86]

$$
\mathcal{M}_{\text{ISS}}^{9\times 9} = \left(\begin{array}{ccc} 0 & Y_{\nu}v & 0 \\ Y_{\nu}^{T}v & 0 & M_{R} \\ 0 & M_{R} & \mu_{X} \end{array}\right) \Rightarrow \left\{\begin{array}{ccc} 3 \text{ light } \nu : m_{\nu} \approx \frac{(Y_{\nu}v)^{2}}{(Y_{\nu}v)^{2} + M_{R}^{2}} \mu_{X} \\ 3 \text{ pseudo-Dirac pairs} : m_{N} \pm \approx M_{R} \pm \mu_{X} \end{array}\right.
$$

$$
m_{\nu} \sim (Y^{\nu} \nu)^{T} \frac{\mu_{X}}{M_{R}^{2}} (Y^{\nu} \nu)
$$

Interplay of two scales driving smallness of m_{ν} : M_{R} and μ_{X} For **natural values** of $Y^{\nu} \sim \mathcal{O}(1)$ comparatively "light" heavy spectrum ($\Lambda_{\textsf{EW}} \leftrightarrow$ TeV) for small values of μ_X (around eV - keV) u
P For natural values of $Y^{\nu} \sim \mathcal{O}(1)$ excluded \mathbf{S} and \mathbf{V} allies of $\mathbf{u}_{\mathbf{x}}$ (around eV - keV) λ

$$
\Rightarrow
$$
 Despite small $m_{\nu} \sim \mu_X \frac{m_D^2}{M_R^2}$, a "low" NP scale $\sim M_R$, and sizeable mixings $(\theta \propto m_D^{\dagger} M_R^{-1})$!

mana ay isang pangalawan

cLFV and EW precision in the ISS

A.M. Teixeira, LPC Clermont

Inverse seesaw: well-motivated **low-scale mechanism of neutrino mass generation**

ISS(3,3) \Rightarrow SM + 3 ν_R + 3 X (rich phenomenology \Rightarrow testability!)

⇒ **Abundant "flavour" signals: cLFV** transitions (at low and high energies) Regimes *already disfavoured* from current bounds! cLFV actively constrains parameter space of **ISS**

Opportunities to **observe cLFV** in (near-)future facilities: ⇒

sector @ Mu3e, COMET & Mu2e *μ* − *e*

sector @ Belle II, FCC-ee, ... *τ* − *μ*

Inverse seesaw: well-motivated **low-scale mechanism of neutrino mass generation**

ISS(3,3) \Rightarrow SM + 3 ν_R + 3 X (rich phenomenology \Rightarrow testability!)

Low-scale models for *mν***: Inverse Seesaw** e u estadounidense de la construcción

Inverse seesaw: well-motivated low-scale mechanism of neutrino mass generation

ISS(3,3) \Rightarrow SM + 3 ν_R + 3 X (rich phenomenology \Rightarrow testability!)

A consequence of the **dominant contribution of Z-penguins** in the 3-body decays and in neutrinoless conversion in nuclei (for the most "observable" regimes...)

Observation of $\mu \to 3e$ \Rightarrow *observation* of $\mu - e$ conversion $\tau \to 3\mu \Rightarrow$ observation of $Z \to \mu\tau$ $\mu \to 3e \Rightarrow$ observation of $\mu - e$ conversion
 $\tau \to 3\mu \Rightarrow$ observation of $Z \to \mu\tau$

 22 bility.

 \mathcal{V}

Inverse seesaw: well-motivated **low-scale mechanism of neutrino mass generation ISS(3,3)** \Rightarrow **SM** + **3** ν_R + **3** \overline{X} (rich phenomenology \Rightarrow **testability!**)

⇒ **Abundant "flavour" signals: cLFV** transitions (at low and high energies)

Precision tests: electroweak observables and **lepton flavour universality** ⇒

LFUV-sensitive:
$$
R_Z^{\alpha\beta} = \frac{\Gamma(Z \to \ell_\alpha^+ \ell_\alpha^-)}{\Gamma(Z \to \ell_\beta^+ \ell_\beta^-)}, R_Z^{\alpha\beta} \Big|_{SM} \simeq 1
$$
 Let $R_W^{\alpha\beta} = \frac{\Gamma(W \to \ell_\alpha \nu)}{\Gamma(W \to \ell_\beta \nu)}, R_W^{\alpha\beta} \Big|_{SM} \simeq 1$

EWPO: $\Gamma(Z \rightarrow inv.)$, oblique parameters, ...

New parametrisation (beyond Casas-Ibarra) to access key-regimes of **large LFUV** *(escaping cLFV constraints!)* $\mu_X^{} = M_R^T \, m_D^{(-1)} \, U_{\text{PMNS}}^* \, m_\nu^\text{diag} \, U_{\text{PMNS}}^\dagger \, (m_D^T)^{(-1)} \, M_R^{} \, , \ \ \ Y_D^{} = y_i^d \, \mathscr{V} M_R^\dagger \, ,$ **Massive (semi-)analytical computation** of form-factors, renormalisation, ...

[Abada, Kriewald, Pinsard, Rosauro, AMT, 2307.02558]

Non-negligible NLO corrections to **ISS** vertices! *Z ℓ ℓ*, *Z νν* and *W ℓ ν*

Inverse seesaw: well-motivated **low-scale mechanism of neutrino mass generation ISS(3,3)** \Rightarrow SM + 3 ν_R + 3 X (rich phenomenology \Rightarrow testability!)

⇒ **Abundant "flavour" signals: cLFV** transitions (at low and high energies)

⇒ Precision tests: LFUV in Z decays

large **deviations** from **SM** possible (sizeable NLO corrections)

$$
R_{\tau\mu}^Z = \frac{\Gamma(Z \to \tau^+\tau^-)}{\Gamma(Z \to \mu^+\mu^-)}
$$

SM Contributions around **SM prediction** (already in tension with measurement)

> **Large deviations for sizeable Yukawas** (corresponding to masses ~ 5 TeV)

Significant NLO corrections to LFU in Z decays!

⇒ FCC-ee expected to probe these regimes (increase in experimental precision)

Inverse seesaw: well-motivated **low-scale mechanism of neutrino mass generation ISS(3,3)** \Rightarrow SM + 3 ν_R + 3 X (rich phenomenology \Rightarrow testability!)

⇒ **Abundant "flavour" signals: cLFV** transitions (at low and high energies)

⇒ Precision tests: LFUV in Z decays

large **deviations** from **SM** possible (sizeable NLO corrections)

⇒ **(EW) precision tests: Invisible** *Z* **decays**

[Abada, Kriewald, Pinsard, Rosauro, AMT, EPJC 84 (2024) 2]

Large deviations from SM prediction

Significant NLO corrections to invisible Z decays! $\Gamma_{\text{tree}}(Z \to \text{inv.}) \cdot \Gamma_{\text{loop}}(Z \to \text{inv.})$ up to 5 MeV! *(current exp. uncertainty 1.5 MeV...)*

NLO corrections: master **theory uncertainties,** on par with experiment!

 \Rightarrow **FCC-ee** expected to probe important regimes (increase in experimental precision)

Inverse seesaw: well-motivated **low-scale mechanism of neutrino mass generation ISS(3,3)** \Rightarrow SM + 3 ν_R + 3 X (rich phenomenology \Rightarrow testability!)

⇒ **Abundant "flavour" signals: cLFV** transitions (at low and high energies)

⇒ Precision tests: LFUV in Z decays

large **deviations** from **SM** possible (sizeable NLO corrections)

⇒ **(EW) precision tests: Invisible** *Z* **decays -** large **deviations from SM!**

[Abada, Kriewald, Pinsard, Rosauro, AMT, EPJC 84 (2024) 2]

EWPO vs. cLFV - complementary probes cLFV in $\mu - e$: usually most stringent constraints $(e.g. $\mu \rightarrow e\gamma$, $\mu - e$ conversion...)$

Invisible Z decays @ FCC-ee ⇒ explore regimes beyond cLFV future reach

probe ISS(3,3) regimes with **sizeable** ⇒

 or negligible cLFV!

A.M. Teixeira, LPC Clermont 30

New Physics paths to cLFV: neutrino masses beyond "standard seesaw"

A.M. Teixeira, LPC Clermont

Beyond "standard" seesaw realisations

Seesaw (and its variants) - one of the most appealing mechanisms for m_ν generation Further ways to account for **tiny neutrino masses: higher order, higher dimension!**

Several **other** interesting and theoretically **well-motivated possibilities exist: Tree-level** realisations via **higher-dimension** operators, **dynamical "seesaws"**, ... **Higher order realisations** (Dirac/Majorana): from first **Zee model**, to **R_pV SUSY**, ... **scotogenic** models, to **3-loops and more!**

Beyond "standard" seesaw realisations **Beyond "standard" seesaw realisations**

 $\frac{1}{2}$ because $\frac{1}{2}$ and its variates possibilities of the most appearing mechanisms for m_p generation Seesaw (and its variants) - one of the most appealing mechanisms for m_{ν} generation **Les deux infinis** ISMS FOR m_{ν} generation improve the experimental accuracy by a factor 4 and 5 and 5 and 5 c.l., in the 5 c.l., in the 5

Several other interesting and theoretically well-motivated possibilities exist: S idiuus side, there is still a debate about the small and S

J
often aiming at addressing w, and other CM ebservational issues often aiming at addressing m_{ν} and other **SM observational** issues... magnetic moment regarding hadronic vacuum polarization (HVP). A recent lattice-QCD result in the SM prediction of the SM prediction of α and α and α are muon into a green with α

cLFV and EW precision in scotogenic models

A.M. Teixeira, LPC Clermont

Scotogenic models: a link between **neutrino mass** generation and **dark matter!**

Additional Z_2 symmetry: stabilises dark matter candidate \ldots but

neutrino masses @ 1-loop ⇒

[Review on phenomenology of generalised scotogenic models: Hagedorn et al, 1804.04117]

A minimal realisation: extend SM by **inert scalar doublet** $\boldsymbol{\eta}$ and <code>RH</code> neutrinos N_R

 $\mathbf{u} \cdot \mathbf{v} \cdot \mathbf{v}$ **cLFV observables:** numerous contributions from $\boldsymbol{\eta}$ and/or N_R

[Toma and Vicente, 1312.2840]

A.M. Teixeira, LPC Clermont

[Ma, 2006]

Scotogenic models: a link between **neutrino mass** generation and **dark matter!** Additional Z_2 symmetry: stabilises dark matter candidate \ldots but **neutrino masses** @ 1-loop ⇒ \Rightarrow neutrino masses @ 1-loop [Ma, 2006]

A minimal realisation: extend SM by <mark>inert scalar doublet η </mark> and **RH neutrinos** N_R

 cLFV observables: hints on the nature of the DM candidate ($\pmb{\eta}$ or N_R) and ν mass scale

Determination of $R_{\mu e}$ = BR($\mu \to 3e$)/BR($\mu \to e\gamma$) \Rightarrow hints on lightest neutrino mass m_{ν_1} spectrum has been assumed, see text for the left for \mathcal{L} . The right for \mathcal{L} $E(\gamma) \Rightarrow$ hints on lightest neutrino mass m_{ν_A}

assumed, see text for details. To the left for $N_{\rm H}$ for $N_{\rm H}$ for $N_{\rm H}$ for $N_{\rm H}$

Low-scale models for m_{ν} **: DM connection (?)** ² *y*¹¹ ^p ² *y*¹² 0 *M* **LOW-SC2** CCCCA *.* (2.9)

Scotogenic models: a link between neutrino mass generation and dark matter! [Ma, 2006] Additional Z_2 symmetry: stabilises dark matter candidate \ldots but **neutrino masses** @ 1-loop ⇒

"T1-2-A" variant: SM extended by $SU(2)_L$ Weyl fermions, Majorana singlets & extra scalars

 \Rightarrow *ν* mass generation, DM candidates, $(g-2)_{\mu}$ and BAU via leptogenesis \rightarrow μ mass generation, bin is

[Alvarez et al, 2301.08485]

This matrix is diagonalised by a unitary matrix *U* according to

 ϕ^0_n *n*

Scotogenic models: a link between **neutrino mass** generation and **dark matter!** Additional Z_2 symmetry: stabilises dark matter candidate \ldots but **neutrino masses** @ 1-loop ⇒ [Ma, 2006]

[Alvarez et al, 2301.08485] "T1-2-A" variant: SM extended by $SU(2)_L$ Weyl fermions, Majorana singlets & extra scalars

Relax certain (driving) assumptions \Rightarrow *ν* masses, **DM candidates** (scalar and fermionic) \Rightarrow generic Δa_{μ} - from SM-like to NP (at ~5 σ) ; no BAU

Avoid **theoretically disfavoured** regimes (large hierarchical "Yukawas" & scalar couplings)?

Thorough exploration of flavoured and electroweak precision observables!

 \Rightarrow **cLFV decays:** leptonic, $Z \rightarrow \ell_{\alpha}^{} \ell_{\beta}^{} ,$ $H \rightarrow \ell_{\alpha}^{} \ell_{\beta}^{}$

⇒ EW observables: sensitive probes of new interactions (scalar, vector, fermion...) $Z \rightarrow \mathsf{inv}\text{, }$ LFUV in $Z \rightarrow \ell_{\alpha}^{} \ell_{\alpha}^{}$ *(in progress)* $\mathcal{H} \rightarrow \ell_{\alpha} \ell_{\alpha}$ [Darricau, Lee, Orloff, AMT to appear soon]

Full computation of NLO contributions to Z and Higgs interactions!

[see e.g. Grimus et al, 0802.4353]

A.M. Teixeira, LPC Clermont 34

Scotogenic models: a link between neutrino mass generation and dark matter!

cLFV leptonic decays: D

- ⇒ correlated muon-electron decays (dipole dominance)
	- ⇒ sizeable box-contributions for 3-body tau decays

[Darricau, Lee, Orloff, AMT, to appear soon]

es deux infi

Scotogenic models: a link between neutrino mass generation and dark matter!

cLFV leptonic decays: well within future reach!

muon cLFV decays ↝ **test model @ MEG II, Mu3e, Mu2e & COMET**

LFUV in *Z* **decays (and Higgs)**

 \Rightarrow Typically within 2σ (although certain regimes in stronger tension)

- **Scotogenic models: a link between neutrino mass generation and dark matter!**
-

cLFV leptonic decays: well within future reach!

muon cLFV decays ↝ **test model @ MEG II, Mu3e, Mu2e & COMET**

- **LFUV in** *Z* **decays (and Higgs)**
	- \Rightarrow Typically within 2σ (although certain regimes in stronger tension)
- **cLFV in** *Z* **and Higgs decays (and Higgs)**
	- \Rightarrow Constraints on certain regimes!
	- \Rightarrow Potentially testable at FCC-ee (especially $Z \rightarrow \mu \tau$)

cLFV beyond (minimal) neutrino masses...

A.M. Teixeira, LPC Clermont
NP models of flavour: so many possibilities!

UV-complete models: GUTs, Supersymmetry, extra dimensions, ...

Ultimately addressing all (several) SM problems, and **testable** (via flavours?!) **??**

Can **lepton flavours** help us disentangle the **NP model at work?** Or **falsify** candidates?

NP models of flavour: so many possibilities!

Extensive contributions in recent years - driven by NP hints (m_{ν} , AMMs, B-anomalies...)

⇒ exploring *flavoured signatures of BSM* realisations

 W have seen in the previous sections and in Sections and in Section 7.1 that the patterns of flavour violations of α

AC: RH currents & U(1) flavour sym **RVV2:** SU(3)-flavoured MSSM **AKM:** RH currents & SU(3) family sym **LL:** CKM-like currents *δ* **FBMSSM:** flavour-blind MSSM **LHT:** Little Higgs (T-parity)

cted impact for observable: Expected **impact** for **observables:**

- large effects large effects
- $\star \star$ small, but visible

AKM [12] RH currents & SU(3) family symmetry

 \star unobservable

 $B_{\rm eff}(K_{\rm eff})$ only but the inclusion in this test of $K_{\rm eff}$ will be very helpful. The distinction in this test of $K_{\rm eff}$ between the AC and RVV2 models has been discussed in the previous sections while the one between population betton: **Densely** populated sector!

W.Ootani, "*Dipole Moments and Charged Lepton Flavour Violation*", 2017 ICFA Seminar, Nov. 6th-9th, 2017, Ottawa, Canada 6 cLFV transitions amongst the most sensitive observables to numerous NP models!

[[]Altmannshofer et al, '10]

Geometric flavour: RS warped extra dimensions

Geometrical distribution of fermions in bulk: **Bulk of any or any or any or any of the bulk** of any or any or

reproduce hierarchy in 4dim Yukawas from "anarchic" $\mathcal{O}(1)$ dim5 couplings!

Present bounds on LFV processes compatible with O(1 TeV) KK masses if *Non-negligible phenomenological issues:*

Highcalized on the IR brane, essential or the IR brane, excluding the version of the version of the version of the μ K symmetry to prevent violation enlarge bulk symmetry to prevent violation of custodial SU(2) symmetry additional "rescue" strategies to avoid excessive FCNCs, to protect EW precision observables, ..., among other issues

> [Burdman, '02; Agashe et al, '04; Csaki et al, '08; Blanke et al & Buras et al, '08-'09; Bauer et at, '10; Vempati et al, '12; Beneke et al, '12-'15; and many others...]

Geometric cLFV: RS warped extra dimensions Genetric clerviers warped extra dimensions.

Example: custodially protected model, full inclusion of all dim-6 cLFV operators generical anarchic Yukawa couplings

new gauge fields & KK-excitations of lepton fields ⇒ cLFV transitions

Most stringent constraints from $\mu \rightarrow e\gamma$ and $\mu - e$ conversion

τ decays comparatively less restrictive decays comparatively less restrictive *τ*

Current *μ* **−** *e* **cLFV bounds constrain NP scale to be very heavy, beyond LHC reach**

 $T_{KK} \gtrsim 4$ TeV (corresponding to $m_{KK}^1 \gtrsim 10$ TeV)

Future $\mu - e$ **sensitivities: exclude anarchic RS models (without additional symmetries)**

(corresponding to KK gluon masses around 20 Te up to 8 TeV (corresponding to KK gluon masses around 20 TeV)

Composite Higgs and warped extra dimensions Adding symmetry: composite Higgs and warped extra dims

CNTS

Holographic composite Higgs model based on enlarged symmetry, $\mathcal{G}_{\mathsf{SM}} \times G_{\!f}$ D 10.0 graphic composite Higgs model based on Gfilarged symmetry, $\mathcal{B}_{SM} \wedge \mathcal{O}_f$

 $G_f = X \times Z_N$, with $X = S_4, A_4, \Delta(96,384)$

(Discrete) symmetries - predict the lepton mixing pattern (masses unconstrained) Applied to 5dim model in warped space; both cases of Dirac and Majorana neutrinos (Discrete) symmetries - predict the lepton miving pattern (masses unconstrained)

 n **cLFV** observables (as well as **EDMs**) typically below experimental bounds (m_{KK}^1 ∼ 3 − 4 TeV) **MEG (I & II) bounds** on $\mu \to e\gamma \to$ constrain the size of boundary kinetic terms! Important role played in the future by **Mu3e data** $\frac{1}{\sqrt{2}}$ observables (and EDM) the EDMs of Boundary kinetic terms) $\frac{1}{\sqrt{2}}$

> **cLFV** allows to infer relevant **information on fundamental parameters** ⇒ ⇒ CLI V allows to finer relevant information on fundamental parameters \rightarrow CLI V allows to finer relevant

Concluding remarks

New Physics model

A.M. Teixeira, LPC Clermont

Outlook

Confirmed observations and several **"tensions"** suggest the need to go **beyond the SM** In the lepton sector, ν -masses provided the 1st laboratory evidence of NP Many experimental **"tensions"** nested in **lepton-related observables**

Lepton physics might offer valuable hints in **constructing and probing NP models New Physics** can be **manifest via cLFV, LNV, ..**. even before any **direct discovery! (Synergy of) lepton observables** can provide **information on the underlying NP model**

New Physics is there! Lepton physics might be a perfect **portal** to address SM problems

- ⇒ First hints on **preferred paths** to NP from EFT approach
- ⇒ Attempt at identifying the underlying model capable of accounting for *all* SM problems (m_{ν} , DM and BAU) and further "tensions" with observation!
- **cLFV** emerges as extremely **powerful probe** to test and falsify **NP in the lepton sector**

Explore different paths, and **profit from amazing experimental prospects in the near future!**

Additional material

A.M. Teixeira, LPC Clermont

cLFV observables

A.M. Teixeira, LPC Clermont

cLFV muon channels: radiative decays la lp ⁹ ⁹

NP

$$
\triangleright
$$
 cLFV decay: $\mu^+ \rightarrow e^+ \gamma$

 MEG II (@ PSI): $BR(\mu^+ \rightarrow e^+ \gamma) \ \leq 6 \times 10^{-14}$

- rechy e provincia de la compañada de la compañ
La compañada de la compañada d *Event signature:* $E_e = E_\gamma = m_\mu/2$ (~ 52.8 MeV) Back-to-back $e^+ - \gamma$ ($\theta \sim 180^\circ$); Time coincidence \mathcal{L} radius for the signal positron essentially independent of the angle of \mathcal{L} γ (0¹ 100), this concluding
- **Backgrounds** ⇒ prompt physics & accidental $\frac{1}{10}$ Accidental: coincidence of unith Prompt: radiative μ decays ($\mu \to e \bar{\nu}_e \nu_\mu \gamma$, very low E_ν) [$\propto R_\mu$] Accidental: coincidence of γ with positron from Michel decays $\mu \to e \, \bar{\nu}_e \nu_\mu$: p hoton from $\mu \to e\,\bar{\nu}_e \nu_\mu\gamma\,;\,\,\gamma$ from in-flight e^+e^- annihilation $\qquad \,[\,\,\propto R^2_\mu\,]$ $[\propto R_{\mu}^2]$

very hard to go beyond 10^{-15} without the resolution of the observable *X*, *e^X* the detection efficiency for the particle *X*. For the case of the *conceptually different approach* photon energy resolution *sE^g* , the two values refer to the shallow (*<*2 cm)/deep (*>*2 cm) events. *ste*⁺*^g*

 $\mathbf{u} \in \mathcal{V}$

 $\overline{}$

cLFV muon channels: 3-body decays NP NP u e u estadounidade de la contradición de la contra

e \blacktriangleright **cLFV** decay: $\mu^+ \rightarrow e^+e^-e^+$

- \longrightarrow **Event signature:** $\Sigma E_e = m_\mu$; $\Sigma P_e = 0$ amplifier, discriminators for the anode wires; $M_{\rm eff}$ and $\sigma_{\rm eff}$ and $\sigma_{\rm eff}$ and $\sigma_{\rm eff}$ common vertex; Time coincidence u e e
- Physics: multi-body μ decays $(\mu \to e \bar{\nu}_e \nu_\mu e^+e^-$, very low E_ν) τ_{ν} intense μ _{*j*} $\overline{a\bar{v}}$ \overline{u} decave with atomic $\overline{a}^{\dagger}\overline{a}^{-}$ Physics: multi-body μ decays ($\mu \to e \bar{\nu}_e \nu_\mu e^+ e^-$, very low E_ν)
Accidental: Bhabha scattering of Michel e^+ from $\mu \to e \bar{\nu}_e \nu_\mu$ decays with atomic $e^+ e^ \mathbf{t}$ the positive muon decay inside at rest with a light-weight tracker placed inside a 1 T magnetic muon decay inside Michel positrons with e^+e^- from γ conversion Backgrounds ⇒ physics & accidental The secret is the set of the set o Accidental: $\frac{2}{3}$

cLFV in muonic atoms: *μ* **−** *e* **conversion**

*M***uonic atoms: 1s bound state formed when** μ **[−] stopped in target SM allowed** processes: decay in orbit (DIO) $\mu^- \to e^- \nu_\mu \bar{\nu}_e$

nuclear capture $\mu^- + (A, Z) \to \nu_\mu$ nuclear capture $\mu^- + (A,Z) \rightarrow \nu_\mu + (A,Z-1)$

In the presence of **New Physics - cLFV neutrinoless** $\mu^- - e^-$ **conversion**

 μ^{-} + $(A, Z) \rightarrow e^{-}$ + (A, Z)

NP

Event signature: single mono-energetic electron For Aluminium, Lead, Titanium $\;\,\thinspace\sim\; E_{\mu e} \approx \mathcal{O}(100$ MeV) *Which target?** For coherent conversion, maximal rates for* $30 \le Z \le 60$ $E_{\mu e} = m_{\mu} - E_B(A, Z) - E_R(A, Z)$

Backgrounds \Rightarrow Only physics! μ decay in orbit, beam purity, cosmic rays, ...

cLFV in muonic atoms: *μ* **−** *e* **conversion**

*M***uonic atoms: 1s bound state formed when** μ **[−] stopped in target SM allowed** processes: decay in orbit (DIO) $\mu^- \rightarrow e^- \nu_\mu \bar{\nu}_e$ nuclear capture $\mu^- + (A,Z) \rightarrow \nu_\mu + (A,Z-1)$

In the presence of **New Physics** - cLFV & LNV ($\Delta L = 2$) neutrinoless $\mu^- - e^+$ conversion μ^{-} + $(A,Z) \rightarrow e^{+}$ + $(A,Z-2)^{*}$

 conversion: coherent process, single nucleon, nuclear ground states conversion: 2 nucleons ($\Delta Q = 2$), possibly excited final state *μ*[−] − *e*[−] μ^--e^+ conversion: 2 nucleons ($\Delta Q=2$ μ^- cj e^+
 $\mu^ e^-$ convers

A **unique connection** between LNV (in association with Majorana nature and possibly,
neutrino mass generation) and cl **FV** neutrino mass generation) and **cLFV**

[see e.g. Geib et al, 1609.09088]

 $z_{,}$ a θ

 $\frac{z-2}{(*)}$

cLFV in muonic atoms: *μ* **−** *e* **conversion**

*M***uonic atoms: 1s bound state formed when** μ **[−] stopped in target SM allowed** processes: decay in orbit (DIO) $\mu^- \rightarrow e^- \nu_\mu \bar{\nu}_e$ nuclear capture $\mu^- + (A,Z) \rightarrow \nu_\mu + (A,Z-1)$

In the presence of **New Physics** - cLFV & LNV ($\Delta L = 2$) neutrinoless $\mu^- - e^+$ conversion $\mu^- + (A,Z) \rightarrow e^+ + (A,Z-2)^*$ EV & LNV $(\Delta I - 2)$ neutrinoless $\mu^- = e^+$ conversion

> μ^--e^- conversion: coherent process, single nucleon, nuclear ground states *μ*[−] − *e*+ conversion: 2 nucleons (ΔQ = 2), possibly excited final state

Event signature: single positron - but complex energy spectrum For Aluminium (giant dipole resonance) $\;\,\sim\; E_{\mu^-e^+}^{\text{Al, GDR}} \approx \mathcal{O}(83.9 \text{ MeV})$ **Event signature:** single positron - but complex et $E_{\mu e}^{\mathbf{N}^*} = m_{\mu} - E_B(A, Z) - E_R(A, Z) - \Delta_{Z-2^{(*)}}$ $F(A, Z) = F(A, Z) = A$ μ ^µ−e⁺ ≈ O(83.9 MeV) [< GDRAl >[∼] ²¹.¹ MeV (6.⁷ MeV)] [Geib et al, '16]

Future prospects: Mu ^z MT

Best sensitivity expected for Ca, S and Ti targets (possibly $\sim \mathcal{O}(\text{few} \times 10^{-15})$)

 $R_{\rm c}$ studies: best sensitivity associated with $C_{\rm c}$ associated with $C_{\rm c}$ and $T_{\rm c}$ [Yeo et al,'17]

cLFV in muonic atoms: Coulomb enhanced decay

*M***uonic atoms: 1s bound state formed when** μ **[−] stopped in target**

In the presence of **New Physics** - **cLFV muonic atom decay** *μ***[−]** *e***[−] →** *e***[−]** *e***[−]** P lnitial μ^-, e^- : 1s states bound in Coulomb field of muonic atom's nucleus

Coulomb interaction increases wave function overlap rate strongly enhanced in large Z atoms, $\Gamma \gtrsim (Z-1)^3$ Larger phase space (compared with $\mu \rightarrow 3e$)

Event signature: back-to-back electrons, $E_{e^-} \approx m_\mu/2$

 $\textsf{Backgrounds} \Rightarrow \textsf{similar}$ to neutrinoless conversion

Experimental status - new observable! possibly included in future physics runs (e.g. COMET)

cLFV muonium decays \sim it is the set of t

é

Mu NP

 $\sqrt{15}$

Muonium: *μ***⁺** *e***[−]**

Hydrogen-like Coulomb bound state, free of hadronic interactions! Powerful laboratory for EW tests and cLFV la Ni β la Ni
La Ni β la Ni

In the presence of **New Physics** - **Muonium oscillations** and Muonium decays **OSC**

Mu-Mu oscillation

Spontaneous conversion *μ***⁺** *e***[−]** ↭ *μ***[−]** *e***⁺** e µ Mu NP Mu

Reflects a double (individual) lepton number violation |Δ*Le* | = |Δ*L^μ* | = 2 Rate (typically) suppressed by external magnetic fields **Detection:** reconstruct Michel electron from μ^- decays and shell positron ر
. ernal magnetic fields Michel electron from μ^- decays and s

 $\frac{1}{2}$ **Experimental status:** MACS \cdot $P(\text{Mu} - \overline{\text{Mu}}) < 8.3 \times 10^{-11}$ **Future prospects:** MACE, AMF (@FNAL) [Willmann et al, 1999]

[Bai et al, 2203.11406]

Mu decays

 μ et

 $\mu^+ e^- \rightarrow e^+ e^-$

Clear signal compared to SM-allowed muonium decay, Mu $\;\rightarrow e^+e^-\bar{\nu}_\mu\,\nu_e$ No available bounds, no clear roadmap... en en μ et

cLFV tau decays: leptonic and more

cLFV tau decays: abundant modes! Pure leptonic, semileptonic (2- and 3-body), ...

- **Radiative decay:** *τ***[±] →** *ℓ* **[±]** *γ*
	- **Event signature:** $E_{\text{final}} \sqrt{s/2} = \Delta E \sim 0$; $M_{\text{final}} = M_{\ell\gamma} \sim m_{\tau}$
	- Backgrounds \Rightarrow coincidence of isolated leptons with γ (ISR, FSR); mistagging
- **3-body leptonic decay:** $\tau^{\pm} \to \ell_i^{\pm} \ell_j^{\mp} \ell_k^{\pm}$
	- ${\bf Event \ signature: } E_{3\ell} \sqrt{s/2} \, \sim 0 \; ; M_{3\ell} \sim m_{\tau}$
	- $Backgroups \Rightarrow No irreducible backgrounds!$

Small background from $q\bar{q}$ and Bhabha pairs, ...

cLFV tau decays: leptonic and more

Tau leptons - **heaviest of all charged leptons!** *Cannot have "intense tau beams" :)* Copious production at B-factories (BaBar, Belle, LHCb, Belle II, ...) Production and decay: $e^+e^- \rightarrow \tau^+\tau^-$ signal "hemisphere" **tagging "hemisphere" (e.g.** $\tau^+ \rightarrow \bar{\nu}_r \nu_e e^+$)

Exabel EX bay decays: abundant modes! Pure leptonic, semileptonic (2- and 3-body), ...

Semi-leptonic cLFV tau decays

2-body final state: $\tau \rightarrow \ell^b h^0$ (pseudoscalar, scalar or vector neutral meson) **3-body** final state: $\tau \to e^{\theta} h_i h_j$ ($h \leftrightarrow \pi^{\pm}, K^{\pm}, K^0_s$)

cLFV exotic modes (also lepton & baryon number violating)

$$
\tau^{-} \to \ell^{+} h_{i}^{\pm} h_{j}^{\pm} \quad (h \leftrightarrow \pi^{\pm}, K^{\pm}) \quad \Rightarrow \text{LNV}
$$
\n
$$
\tau^{-} \to \Lambda h^{-} \quad (h \leftrightarrow \pi^{\pm}, K^{\pm}) \quad \Rightarrow \text{LNV & \text{BLV}}
$$
\n
$$
\tau \to p \, \ell_{i} \, \ell_{j} \quad \Rightarrow \text{LNV & \text{BLV}}
$$