Is Cosmology in Conflict with **Neutrino Oscillations?**

Based on: DN, M. Escudero, E. Fernández-Martínez, X. Marcano, V. Poulin [2407.13831]

Instituto de

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

Daniel Naredo BLV2024 - KIT - 09/10/2024

The quest for the absolute neutrino mass

• However, absolute neutrino mass scale still unknown

O Direct constraint from terrestrial experiments: KATRIN

Constraints from cosmology — The strongest!

KATRIN collaboration [2406.13516] $\sum m_{\nu} < 1.35 \,\mathrm{eV}$ (90 % CL)

• As of April, the DESI collaboration updated:

$$\sum m_{\nu} < 0.072 \,\mathrm{eV}$$
 (95)

Dangerously close to the minimum allowed by oscillations:

 $\sum m_{\nu} \ge 0.06 \,\mathrm{eV}$ (Normal Ordering) NuFIT 5.3: http://www.nu-fit.org/ $\sum m_{\nu} \ge 0.10 \,\mathrm{eV}$ (Inverted Ordering)

• Approaching the physical boundary at $\sum m_{\nu} = 0$

Status of m_{τ} from cosmology

(CMB + DESIBAO) 5%CL)

In light of this status:

What datasets are driving this bound?

X Which role do possible statistical flukes/anomalies play?

CLASS & MontePython Lesgourges et al. Which statistical procedure? Bayesian vs frequentist Procoli Karwal et al. [2401.14225]

Bound is model-dependent: how does it change beyond ΛCDM ?

Massive neutrinos in cosmology

Neutrinos contribute to the expansion rate of the Universe

• Ultra-relativistic until $T_{\nu} \simeq m_{\nu}/3$

• Do not cluster at scales smaller than $L \simeq 80 \,\mathrm{Mpc} \frac{(0.1 \,\mathrm{eV})}{100}$

 \mathcal{M}_{1}

Ideal probe — Direct observation of the matter power-spectrum (Not competitive as of today)

Massive neutrinos in cosmology

• As of today: CMB (Planck) + BAO and/or Supernovae

• Two main effects in the CMB:

- \star Neutrinos affect the Universe expansion ($H \propto \sqrt{\rho}$)
- Suppress clustering of matter
 Less lensing

Massive neutrinos in cosmology

Main constraining power: small angular scales

• This effect also depends on A_s or ω_m

 $\frac{1.00}{C_{\ell}}$

0.96

About CMB lensing

- "Lensing anomaly" reported by the Planck collaboration: [1807.06209] \star Parametrised by an unphysical parameter A_{lens} (standard case $A_{\text{lens}} = 1$) \star An excess of lensing ($A_{lens} > 1$) found at ~ 3σ

• After 2018, Planck reanalyses available — Anomaly reduced \checkmark CamSpec: ~ 2σ Rosenberg et al. [2205.10869] \star HiLLiPoP: $\sim 1\sigma$ Tristam et al. [2309.10034]

About CMB lensing

About CMB lensing

• Massive neutrinos alter the expansion rate — Modifies θ_{c}

• This can be compensated by adjusting H_0 — CMB "geometrical degeneracy"

• Changing H_0 also changes $\Omega_m = \omega_m / h^2$ BAO can break this degeneracy

About BAO measurements

About BAO measurements: DESI-Y1

• The agreement with CMB is worse for DESI than for SDSS

• Best-fit at a higher $H_0 r_d(z^*)$ pushes down $\sum m_{\nu}$

About BAO measurements: DESI-Y1

with Planck G. Efstathiou [2406.12106]

significantly shifts the best-fit

• Both the lensing anomaly and DESI BAO push against $\sum m_{\nu} \neq 0$

Using Planck likelihood without lensing anomaly — Bound relaxed

• Removing DESI z = 0.7 bin — Bound relaxed

• No lensing anomaly + No z = 0.7 bin — Significant relaxation

Planck + BAO combination

Planck2018 + DESI

Hillipop2023 + DESI

Planck2018 + DESI(no z = 0.7)

HiLLiPoP2023 + DESI(no z = 0.7)

• Overall $\sim 10\%$ agreement between Bayesian and frequentist bounds

Planck + BAO combination

Planck2018 + DESI

Hillipop2023 + DESI

Planck2018 + DESI(no z = 0.7)

HiLLiPoP2023 + DESI(no z = 0.7)

No hint of a positive signal?

• Even though the bound is relaxed No positive best-fit

• How unexpected? Perform mock analysis Asses sensitivity

Observe to Bound is stronger even when assuming massless neutrinos ($\sum m_{\nu} = 0$) !!!

Model-dependence of the bound

 \bigcirc Bound is robust upon standard modifications (e.g. varying N_{eff})

 \bigcirc Also robust upon varying DE equation of state w_0 DESI collaboration [2404.03002]

- However, relaxed when assuming a time varying DE equation of state (w_0 and w_a) DESI collaboration [2404.03002]
 - $w(a) = w_0 + w_a(1 a)$

Model-dependence of the bound

• Recently shown that an extended cosmology can only relax up to $\sum m_{\nu} \lesssim 0.3 \, \mathrm{eV}^{-22}$

Cosmology offers a great opportunity to measure the neutrino mass scale

• However, it seems it is closing on the a

• Nevertheless: yet no hint of $\sum m_{\nu} \neq 0$ suggests the presence of some anomaly

 \bigcirc Model dependent bound: can be relaxed up to $0.2 \, \text{eV}$ or even $0.3 \, \text{eV}$

Conclusions

allowed parameter space for
$$\sum m_{\nu}$$

 \bigcirc Critical look: still early to conclude that ACDM cosmology conflicts ν -oscillations

Upcoming years are bound to be promising: new data from DESI and EUCLID

Thank you for your attention! Time for questions/comments

Planck only profiles

• Is there a preference for "negative neutrino masses"?

