Search for LFV and Light New Physics at Belle II

Youngjoon Kwon (Yonsei Univ.) Oct. 8, 2024 @ BLV2024, Karlsruhe

Overview

- Introduction
 - general physics motivation
 - Belle II
- Recent results
 - for LFV (and BNV)
 - for light new physics
- Closing

(C)LFV = (charged) lepton flavor violation BNV = baryon number violation

Motivation

Iepton number, lepton flavor, baryon number

- each, conserved in the SM (with $m_{\nu} = 0$ for LF) due to accidental symmetries
- with $m_{\nu} \neq 0$, LFV can occur but suppressed by $(m_{\nu}/m_W)^4$ $\mathcal{B}(\tau \to l\gamma) =$

Observation of LFV will be a clear signal of NP

• many BSM scenarios predict CLFV with $\mathscr{B}_{\text{CLFV}} \sim (10^{-10} - 10^{-7})$

BNV

• crucial ingredient for BAO (matter-antimatter asymmetry)

(c) Leptoquarks

SuperKEKB and Belle II

- Not just a "B-factory", but tau-factory as well (charm-factory, too) $\sigma(e^+e^- \to \Upsilon(4S) \to B\overline{B}) \sim \sigma(e^+e^- \to \tau^+\tau^-) \sim O(1 \text{ nb})$
- τ -tagging \rightarrow make most τ LFV analyses nearly background-free

LFV and light new physics from Belle II

We also have data taken off-resonance as well as energy scan around $\Upsilon(5S)$

Belle II luminosity

Total integrated luminosity [fb⁻¹]

Belle (1999-2010)
Luminosity

$$\int \mathscr{L}_{total} = 1039 \text{ fb}^{-1}$$

• 980 fb⁻¹ for $\tau^+\tau^-$
• 25 fb⁻¹ at $\Upsilon(2S)$

Oct. 8, 2024

For LFV (and BNV)

 $\tau^+ \to \mu^+ \mu^- \mu^+$

 $\tau^+ \to \ell^+ V^0$

 $\tau^- \rightarrow \Lambda \pi^-, \ \overline{\Lambda} \pi^-$

 $\Upsilon(2S) \to \ell^{\pm} \tau^{\mp}$ BELLE

Oct. 8, 2024

 $\tau^+ \rightarrow \mu^+ \mu^- \mu^+$

- Belle II with 424 fb^{-1}
- two hemispheres
 - for τ_{sig} and τ_{tag}
 - separated by a plane $\perp \hat{\mathbf{n}}_T$ (thrust axis), maximizing T $T = \max_{\hat{\mathbf{n}}_T} \left(\frac{\sum_i |\mathbf{p}^*_i \cdot \hat{\mathbf{n}}_T|}{\sum_i |\mathbf{p}^*_i|} \right)$
- inclusive tagging
 - allow 3×1 and 3×3 (measure all the neutrals, too)
 - signal optimization and background rejection by multi-variate analysis (BDT)

JHEP 09(2024)062

 $^+ \rightarrow \mu^+ \mu^- \mu^+$

2D analysis for signal extraction

variables

$$M_{3\mu} = \sqrt{E_{3\mu}^2 - P_{3\mu}^2}$$

 $\Delta E_{3\mu} = E_{3\mu}^{CM} - E_{beam}^{CM}$

analysis regions

- $\pm 20\sigma$ analysis region
- sideband for bkgd. estimation
- 5σ signal ellipse ("SR", blinded)

JHEP 09(2024)062

 $\tau^+ \rightarrow \mu^+ \mu^- \mu^+$

- check agreement b/w data and MC for the BDT output
 - [SB] $2.0^{+0.7}_{-0.5}$ (MC) vs. 3 events (data)
- expected N(background) • data-driven method using 3 regions $N_A = 4$, outside SR with $0.2 < p^{BDT} < 0.85$ $N_B = 2$, inside SR with $0.2 < p^{BDT} < 0.85$ $N_C = 1$, outside SR with $p^{BDT} > 0.9$ $N_{exp} = N_C \times \frac{N_B}{N_A}$
 - $N_{exp} = 0.7^{+0.6}_{-0.5}$ (from pseudoexperiments assuming Poisson dist. for N_A, N_B, N_C)

JHEP 09(2024)062

 ω

LFV and light new physics from Belle II

from momentum scale (16 %), signal region $\binom{+2.9}{-3.9}$ %)

Oct. 8, 2024

Upper limit of $\mathscr{B}(\tau^+ \to \mu^+ \mu^- \mu^+)$

UL estimated with CLs method (modified frequentist in RooStat)

• 5×10^4 pseudo-experiments at 40 uniform points in the BF range

observed (expected) limit: $\mathscr{B} < 1.9 (1.8) \times 10^{-8}$

most stringent to date

 $\rightarrow f$

980 fb^{-1} of Belle data (126 fb^{-1} more than previous)

Motivation

- $\tau^+ \rightarrow \mu^+ \phi$ thought to be a sensitive probe for LQ models
- some models (unparticle, type-III seesaw, littlest Higgs) predict $\mathscr{B} \sim \mathcal{O}(10^{-10} - 10^{-8})$

Analysis feature

- tag side: $\ell^{\pm}\nu\nu$, $\pi^{\pm}\nu$, $\pi^{\pm}\pi^{0}\nu$, $\pi^{\pm}\pi^{0}\pi^{0}\nu$, $\pi^{\pm}\pi^{\mp}\pi^{\pm}\nu$
- signal side: $\ell = e, \mu$ and $V = \rho^0, \phi, \omega, K^{*0}, \overline{K}^{*0}$
- reject missing particle(s) (any missing particle should be in the tag side)
 - $\checkmark \cos \theta_{\text{miss-tag}}^{\text{cm}} > 0$ and additional cuts depending on mode
- BDT to further reduce the remaining bkgd.
 - $\checkmark M_{V^0}, M_{\nu}^2, P_{\nu}^{\text{c.m.}}, T, P_{\ell}^{\text{sig}}, E_{\text{tag}}^{\text{hemi}}, \cos \theta_{\text{miss-tag}}^{\text{c.m.}}$
 - \checkmark (categorical) τ decay modes, collision energy
 - ✓ (additionally for $\ell^+ \omega$) $p_{\pi^0}^{\text{sig}}$, E_{γ}^{low}

Oct. 8, 2024

LFV and light new physics from Belle II

$\tau^- \rightarrow \Lambda \pi^-, \Lambda \pi^-$

- baryon-number-violating (BNV)
 - in SM, baryon # (B) and lepton # (L) conservations are *accidental*
 - but sphaleron processes could result in BNV & LNV, while preserving B L
 - some NP models predict BNV, with $|\Delta(B-L)| = 0, 2$

analysis approach

• use
$$\Lambda \to p\pi^-, \overline{\Lambda} \to \overline{p}\pi^+$$

- require 1-prong tag, resulting in 4 charged tracks
- signal selection and optimization by Gradient-BDT
- use sideband in $(M_{\Lambda \pi}, \Delta E)$ for bkgd. assessment

arXiv:2407.05117

$\tau^- \rightarrow \Lambda \pi^-, \ \overline{\Lambda} \pi^-$ Result

- Signal counting in $(M_{\Lambda\pi}, \Delta E)$
 - efficiency: 9.5% (9.9%) for $\tau^- \to \Lambda \pi^- (\overline{\Lambda} \pi^-)$
 - $N_{\text{SB}}^{\text{sim}} = 3.2^{+1.7}_{-1.2} \ (5.5^{+2.1}_{-1.6}) \text{ for } \tau^- \to \Lambda \pi^- \ (\overline{\Lambda} \pi^-)$
 - 7 (6) events in the SB for $\tau^- \to \Lambda \pi^- (\overline{\Lambda} \pi^-)$, resulting in $N_{\rm exp} = 1.0^{+1.3}_{-1.1}$ (0.5 ± 0.6) for background
 - zero event observed in each mode

branching fractions

- dominant systematic source: hadron ID (~2.2%) $\mathscr{B}(\tau^- \to \Lambda \pi^-) = (-2.5^{+4.1+1.9}_{-3.7-1.4}) \times 10^{-8} < 4.7 \times 10^{-8}$ $\mathscr{B}(\tau^- \to \overline{\Lambda} \pi^-) = (-1.2 \pm 2.8^{+0.9}_{-0.5}) \times 10^{-8} < 4.3 \times 10^{-8}$
- world's most stringent BF upper limits

Bell 0.4 ---0.2 -0.2 -0.4

0.4

0.2

0.0

-0.2

-0.4

[GeV]

 ΔE

$\Upsilon(2S) \to \ell^{\pm} \tau^{\mp}$

Motivations

- 2-body CLFV decay of a quarkonium
- can provide complementary constraints on the Wilson coefficients of the $\mathscr{L}_{ ext{eff}}$ of new physics models (D.E. Hazard and A.A. Petrov, PRD 94 (2016) 074023)

Analysis features

- use Belle data with 25 fb⁻¹ @ $\Upsilon(2S)$ in Belle II analysis framework (B2BII)
- high-momentum primary lepton (ℓ_1) from $\Upsilon(2S) \to \ell_1^{\pm} \tau^{\mp}$
- use τ^+ decays to $\ell_2^+ \nu \overline{\nu}$ or $\pi^+ \overline{\nu}$
- ℓ_2 to have different flavor w.r.t. ℓ_1 , to suppress copious bkgd. from Bhabha processes
- FastBDT for further background suppression

 $\Upsilon(2S) \to \ell^{\pm}$

OFBDT distributions for the four channels; signal component assumes $\mathscr{B} = 1 \times 10^{-5}$

$$\begin{array}{c|c} e^+e^->\mu^+\mu^-\\ e^+e^->e^+e^-\mu^+\mu^-\\ e^+e^->\tau^+\tau^-\\ & \Upsilon(2S)-> inclusive \\ e^+e^->q\overline{q}\\ e^+e^->e^+e^-\\ signal\\ & data\\ \end{array}$$

Belle (this) results are 14 (3) times more stringent than BaBar (PRL, 2010)

$\mathcal{B}(\Upsilon(2S) \to \mu\tau) < 0.23 \times 10^{-6}$ $\mathcal{B}(\Upsilon(2S) \to e\tau) < 1.12 \times 10^{-6}$ @ 90% CL

Modes	$\epsilon_{ m sig}~(\%)$	$N_{ m exp}^{ m bkg}$	$N_{\rm obs}$
$) \rightarrow \mu^{\mp} \tau^{\pm}$	12.3 ± 0.8	3.9 ± 1.8	3
$r') \rightarrow e^{\mp} \tau^{\pm}$	8.1 ± 1.1	5.9 ± 2.6	12

For 'light new physics'

$\sim \sigma(e^+e^- \to \pi^+\pi^-\pi^0)$ for $a^{\rm HV}_{\mu}$

Youngjoon Kwon (Yonsei U.)

LFV and light new physics from Belle II

connections to muon (g-2)

$$a_{\mu} = \frac{(g-2)_{\mu}}{2} = a_{\mu}^{\text{EW}} + a_{\mu}^{\text{QED}} + a_{\mu}^{\text{QCD}} \qquad a_{\mu}^{\text{QCI}}$$

$$a_{\mu}^{\mathrm{HVP,LO}} = rac{lpha}{3\pi^2} \int_{m_{\pi}^2}^{\infty} rac{K(s)}{s} R_{\mathrm{had}}(s) ds, \quad R_{\mathrm{had}}(s) =$$

 $^{\rm D} = a_{\mu}^{\rm HVP} + a_{\mu}^{\rm H,LBL}$ (82%) (18%) $= \frac{\sigma_0(e^+e^- \to \text{hadrons})}{\sigma_{\text{pt}}(e^+e^- \to \mu^+\mu^-)},$

Measured R-ratio

(a) The hadronic *R*-ratio.

 $\sigma(e^+e^- \to \pi^+\pi^-\pi^0)$

- Study $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ decays in $\mathscr{L} = 191 \text{ fb}^{-1}$
- as a function of $\sqrt{s'}$ by using **ISR** technique
 - reconstruct $e^+e^- \to \pi^+\pi^-\pi^0\gamma_{\rm ISR}$, for $0.62 < \sqrt{s'} = M(3\pi) < 3.50 \text{ GeV}$
- Kinematic fit for background suppression
 - constrain (E, \vec{p}) of $\pi^+ \pi^- \pi^0 \gamma_{\rm ISR}$ to that of $e^+ e^-$ beams
- Validation ("scale factor") of backgrounds in control samples

arXiv:2404.04915 accepted for PR

 $\sigma(e^+e^- \to \pi^+\pi^-\pi^0)$

- π^0 efficiency as a major analysis challenge
- The $\varepsilon(\pi^0)$ is determined to an accuracy of ~1% by comparing full- and partialreconstruction in the $\omega \to \pi^+ \pi^- \pi^0$ region

arXiv:2404.04915 accepted for PRL

- $a_{\mu}^{3\pi}(0.62 1.8 \text{ GeV}) = (48.91 \pm 0.23 \pm 1.07) \times 10^{-10}$
- main syst. uncertainties from efficiency and absence of NNLO in the MC
- 6.5% higher (2.5 σ significant) than the global fit \rightarrow move to smaller 'anomaly' $a_{\mu}^{3\pi}(0.62-1.8\,\text{GeV}) = (45.91 \pm 0.38) \times 10^{-10}$

Closing remarks

- Belle II has returned from LS1, and started Run 2 data taking in Feb. this year, collecting more than 0.5 ab^{-1} data sample in total.
- Belle II has searched for LFV and BNV decays of τ , and they are nearly background-free. We expect much improved results with more data to be pouring in.
- We also show recent searches for LFV processes, τ^- - $\Upsilon(2S) \rightarrow \ell^{\pm} \tau^{\mp}$ from Belle.
- In addition, we present Belle II measurement of $\sigma(e^+e^- \rightarrow \pi^+\pi^-\pi^0)$, which is highly relevant for muon (g-2).
- Run 2 is about to resume (in a few days) with the goal of collecting data sample of several ab^{-1} in the coming few years.

$$\rightarrow \ell^- V^0$$
 and

Measured R-ratio 100 10 0.1 R(s) 0.01 0.001 0.0001 1e-05 0.4 0.6 0.8 1.2 1.4 1.6 1 √s [GeV]

(a) The hadronic *R*-ratio.

ull hadronic R ratio

$$\pi^{+}\pi^{-}$$

 $\pi^{+}\pi^{-}\pi^{0}$
 $K^{+}K^{-}$
 $\pi^{+}\pi^{-}\pi^{0}\pi^{0}$
 $\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$
 $\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0})_{no \eta}$
 $(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0})_{no \eta}$
 $(\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0})_{no \eta}$
 $(\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0})_{no \eta}$
 $(\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0})_{no \eta}$
 $(\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}\pi^{0})_{no \eta}$
 $\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}$

1.8