Heavy Neutrino-Antineutrino Oscillations at Colliders

Stefan Antusch

University of Basel, Department of Physics

BLV 2024, Karlsruhe, Germany

9.10.2024

Main messages

*) Scenario: SM + HNLs (with masses > 5 GeV), barring fine-tuning

- Collider testable low-scale seesaw models* feature pseudo-Dirac pairs of heavy neutrinos (L approx. symm., small mass splitting ΔM)
- Interesting phenomenon: heavy neutrino-antineutrino oscillations
- ➤ Relevant for collider phenomenology of HNLs → Can induce observable Lepton Number Violation (LNV)
- Outline of this talk:
 - Motivation for pseudo-Dirac HNLs
 - Introduction to LNV via heavy neutrino-antineutrino oscillations
 - Can the oscillations be resolved at HL-LHC? .. at FCC-ee?
 - Also when not resolvable: induced LNV important (impact of decoherence!)

Heavy Neutral Leptons – the right SM extension to explain the light neutrino masses?

There are no rightchiral neutrino states N_{Ri} in the Standard Model

→ N_{Ri} would be completely neutral under all SM symmetries (HNLs
 ↔ RH neutrinos
 ↔ sterile neutrinos)

Adding N_{Ri} leads to the following extra terms in the Lagrangian density:

$$\mathcal{L} = \mathcal{L}_{\mathrm{S}M} - \frac{1}{2} \overline{N_{\mathrm{R}}^{i}} M_{ij} N_{\mathrm{R}}^{\mathrm{c}j} - (Y_{\nu})_{i\alpha} \overline{N_{\mathrm{R}}^{i}} \widetilde{\phi}^{\dagger} L^{\alpha} + \mathrm{H.c.}$$

M: HNL mass matrix

 Y_{ν} : neutrino Yukawa matrix (\rightarrow Dirac mass terms m_D)

In the SM + N_{Ri} : Heavy neutrino mass eigenstates (HNLs) interact due to mixing of N_{Ri} with the active SM neutrinos*

$$\ell_{\alpha}^{+}$$

$$W = \theta_{\alpha} N$$

$$h = \theta_{e}, \theta_{\mu}, \theta_{\tau} N$$

*) Scenario in this talk: SM + HNLs

Towards classifying seesaw models ...

Minimal example: 2 RH Neutrinos (2 HNLS)

In the mass basis:

Type I Seesaw: P. Minkowski ('77), Mohapatra, Senjanovic, Yanagida, Gell-Mann, Ramond, Slansky, Schechter, Valle, ...

Landscape of the Seesaw Mechanism

Benchmark scenario: The SPSS (= Symmetry Protected Seesaw Scenario)

... captures the phenomenology of a dominant "pseudo-Dirac"-like HNL pair at colliders ... without the constraints of a restricted pure 2HNL model (\leftrightarrow correlations between $y_{\nu\alpha}$)

$$Y_{\nu} = \begin{pmatrix} y_{\nu_{e}} & 0 \\ y_{\nu_{\mu}} & 0 & \dots \\ y_{\nu_{\tau}} & 0 & \end{pmatrix}, \quad M_{N} = \begin{pmatrix} 0 & M & 0 \\ M & 0 \\ & & \dots \\ 0 & & & \ddots \\ 0 & & & & \ddots \end{pmatrix}$$

+ $O(\varepsilon)$ perturbations to generate the light neutrino masss ...

For details on the SPSS/pSPSS, see: S.A., O. Fischer (arXiv:1502.05915) S.A., E. Cazzato, O. Fischer (arXiv:1612:027 S.A., J. Hajer, J. Rosskopp (arXiv:2210.1073) Additional sterile neutrinos can exist, but assumed to have negligible effects at colliders (which can be realised easily, e.g. by giving lepton number = 0 to them)

Can we observe LNV from the HNLs (required to generate light m_{ν})?

Often assumed that LNV is strongly suppressed by the smallness of neutrino masses and thus practically unobservabvale ... no longer true when **heavy neutrino-antineutrino oscillations** are taken into account!

Heavy Neutrino-Antineutrino Oscillations

Interaction states: Produced from W decay - "Heavy Neutrinos N" (together wilth l_{α}^+) - "Heavy Antineutrinos \overline{N} " (together wilth l_{α}^-)

They are superpositions of the mass eigenstates:

$$\overline{N} = 1/\sqrt{2}(iN_4 + N_5) \quad N = 1/\sqrt{2}(-iN_4 + N_5)$$

Example process at the LHC – HNLs produced from W

University of Basel

Heavy Neutrino-Antineutrino Oscillations

Interaction states: Produced from W decay - "Heavy Neutrinos N" (together wilth l_{α}^+) - "Heavy Antineutrinos \overline{N} " (together wilth l_{α}^-)

They are superpositions of the mass eigenstates: $\overline{N} = 1/\sqrt{2}(iN_4 + N_5)$ $N = 1/\sqrt{2}(-iN_4 + N_5)$ Due to the O(ϵ) perturbations to generate the light neutrino masses: \rightarrow mass splitting ΔM between the heavy mass eigenstates N₄ and N₅ \rightarrow propagation of interfering mass eigenstates induces oscillations between \overline{N} and N

Heavy Neutrino-Antineutrino Oscillations

Since an N decays into a l_{α}^{-} and a N into a l_{α}^{+} , the Heavy Neutrino-Antineutrino Oscillations lead to an **oscillation between LNC and LNV final states**, as a function of the oscillation time (or travelled distance)

Heavy Neutrino-Antineutrino Oscillations in QFT

Study in QFT (using the formlism of external wave packets [cf. Beuthe 2001])

S.A., J. Rosskopp (arXiv:2012.05763) S.A., J. Hajer, J. Rosskopp (arXiv:2307.06208)

$$\mathcal{A} = \langle f | \hat{T} \left(\exp \left(-i \int \mathrm{d}^4 x \; \mathcal{H}_I
ight)
ight) - \mathbf{1} \left| i
ight
angle$$

→ Full oscillation formulae, decoherence effects, ...

where

Oscillation formulae in the SPSS (with ε -perturbations, in an expansion):

$$\begin{split} P_{\alpha\beta}^{LNV}(L) &= \frac{1}{2\sum_{\beta} |\theta_{\alpha}|^{2} |\theta_{\beta}|^{2}} \left(|\theta_{\alpha}|^{2} |\theta_{\beta}|^{2} (1 - \cos(\phi_{45}L)) \right) &\leftarrow \text{LO} \\ \text{Oscillation} \\ \text{probability} &- 2(I_{\beta} |\theta_{\alpha}|^{2} + I_{\alpha} |\theta_{\beta}|^{2}) \sin(\phi_{45}L) \right) , &\leftarrow \text{NLO} \\ P_{\alpha\beta}^{LNC}(L) &= \frac{1}{2\sum_{\beta} |\theta_{\alpha}|^{2} |\theta_{\beta}|^{2}} \left(|\theta_{\alpha}|^{2} |\theta_{\beta}|^{2} (1 + \cos(\phi_{45}L)) \right) &\leftarrow \text{LO} \\ \text{Survival} \\ \text{probability} &- 2(I_{\beta} |\theta_{\alpha}|^{2} - I_{\alpha} |\theta_{\beta}|^{2}) \sin(\phi_{45}L) \right) . &\leftarrow \text{NLO} \end{split}$$

 $egin{aligned} I_eta &:= \mathrm{Im}(heta_eta^* heta_eta^{\,\prime}\exp(-2i\Phi))\,, \ \phi_{ij} &:= -rac{2\pi}{L_{ij}^{osc}} = -rac{\mathsf{M}_{\mathsf{i}}^2 - \mathsf{M}_{\mathsf{j}}^2}{2|\mathbf{p}_0|}\,, \ \Phi &:= rac{1}{2}\mathrm{Arg}\left(ec{ heta^{\prime}} \cdot ec{ heta^*}
ight)\,. \end{aligned}$

LO agrees with previous works, e.g.: G. Anamiati, M. Hirsch and E. Nardi (2016), G. Cvetic, C. S. Kim, R. Kogerler and J. Zamora-Saa (2015), ...

Stefan Antusch

University of Basel

Signal: Oscillating fraction of LNV / LNC decays with lifetime (→ displacement)

→ using the prediction for ΔM in the "Minimal linear seesaw" model with inverse neutrino mass hierarchy (IH)

Example:

For this plot: fixed γ factor (instead of distribution), no uncertainties yet.

S. A., E. Cazzato, O. Fischer (arXiv:1709.03797)

University of Basel

Remark: "Dirac" and "double Majorana" limits

→ "Double Majorana" HNLs limit (similar, but not identical to single Majorana HNL)*

- LNV/LNC ratio ≈ 1
 (oscillations averaged out)

Pseudo-Dirac pair of HNLs (e.g. pSPSS benchmark model)

 Oscillations potentially observable, intermediate LNV/LNC ratio possible (mass splitting ⊿M as additional pheno parameter) \rightarrow "Pure Dirac HNL" limit

no observable LNV (oscillation length too large)

*) still approximate L symmetrity \rightarrow small neutrino masses protected (too large m_v for testable single Majorana HNL); observed two mass aplittings can be explained; no difference between production/decay rates for both limits (Remark: factor 2 difference for single Majorana HNL only probes # of degrees of freedom, not Majorana property)

Are heavy neutrinoantineutrino oscillations resolvable at the HL-LHC (for long-lived HNLs)?

Resolvable oscillations at HL-LHC

Analysis at the reconstructed level using Madgraph "patch" for simulating the oscillations with the pSPSS model file

Madgraph patch and pSPSS bechmark model: S.A., J. Hajer, J. Rosskopp (arXiv:2210.10738)

To see the oscillations, crucial to reconstruct γ and plot over tifetime τ : S.A., E. Cazzato, O. Fischer (arXiv:1709.03797) Are heavy neutrinoantineutrino oscillations resolvable at the FCC-ee (for long-lived HNLs)?

Heavy Neutrino-Antineutrino Oscillations at e⁺e⁻ Colliders (e.g. Z pole HNLs at FCC-ee)

S.A., J. Hajer, B.M.S. Oliviera (arXiv:2408.01389)

Important difference: since the light neutrinos are not detected, so there is no direct information on whether a LN is violated or not! -> Distinguishing LNV/LNC relies on final state angular distributions!

N - N oscillations
 induce an oscillating
 pattern on top of the
 angular dependencies

Angular dependecies for HNLs at the FCC (Z-pole run)

Polarisation of the Z \rightarrow forwardbackward asymmetry of the N vs. \overline{N} in the Z rest frame

Forward-backward asymmetry without oscillations, see e.g.: A. Blondel, A. de Gouvêa and B. Kayser (arXiv: 2105.06576) Polarisation of the N \rightarrow "opening angle" asymmetry of the charged lepton in HNL rest frame

Example Signal: Oscillating ratio of l⁺/l⁻ final states as function of HNL lifetime and polar angle of displaced vertex

blue: >1, red, <1

angle $\theta \equiv \beta$, radius = τ 90 90 90 90 135135135135454545450 180 180 -0 180 0 180 0 225315225225315225315315270270270270(a) BM1 (b) BM₂ (c) BM_3 $(d) BM_4$

pseudo-Dirac with very small ∆M (looks like pure Dirac HNL)

 $R_\ell(au,\cos heta) = rac{P_{\ell^-}(au,\cos heta)}{P_{\ell^+}(au,\cos heta)}$

pseudo Dirac with relatively small ΔM

pseudo Dirac with relatively large ΔM

pseudo-Dirac with very large ∆M (looks like "double Majorana HNLs")

S.A., J. Hajer, B.M.S. Oliviera (arXiv:2308.07297)

Example Signal: Oscillating ratio of l⁺/l⁻ final states as function of HNL lifetime and polar angle of displaced vertex For angular segment:

Lepton # changes as function of τ \rightarrow clear signal of LNV

pseudo-Dirac with very small ∆M (looks like pure Dirac HNL)

 $R_\ell(au,\cos heta) = rac{P_{\ell^-}(au,\cos heta)}{P_{\ell^+}(au,\cos heta)}$

pseudo Dirac with relatively small ∆M

blue: >1, red, <1

pseudo Dirac with relatively large ΔM

pseudo-Dirac with very large ∆M (looks like "double Majorana HNLs")

S.A., J. Hajer, B.M.S. Oliviera (arXiv:2308.07297)

Stefan Antusch

21

Comparison of sensitivities for various oscillating observables @ FCC-ee

S.A., J. Hajer, B.M.S. Oliviera (arXiv:2408.01389)

Well accessible observsble,

very good analysis power:

Parameter region where heavy neutrinoantineutrino oscillations are resolvable

S.A., J. Hajer, B.M.S. Oliviera (arXiv:2408.01389)

University of Basel

Parameter region where heavy neutrinoantineutrino oscillations are resolvable

S.A., J. Hajer, B.M.S. Oliviera (arXiv:2408.01389)

University of Basel

Even when not resolvable (e.g. short-lived HNLs, $m_N >$ m_w): heavy neutrinoantineutrino oscillations can observable induce LNV!

Even if not resolvable \rightarrow "integrated effect" (R_{\parallel} ratio)

Even if not resolvable \rightarrow "integrated effect" (R_{\parallel} ratio)

(*) using LO formulae and when the "observability conditions" are satisfied (i.e. <u>assuming no decoherenc</u>e)

$$R_{\ell\ell}(t_1, t_2) = \frac{\#(\ell^+\ell^+) + \#(\ell^-\ell^-)}{\#(\ell^+\ell^-)} \xrightarrow{*} \mathsf{R}_{\mathsf{II}}(0, \infty) = \frac{\Delta M^2}{2\Gamma^2 + \Delta M^2} \qquad \text{cf. G. Anamiati, M. Hirsch and E. Namiati, M. Hirsch and E. Nami$$

$$\Rightarrow R_{ll}(0,\infty) = \frac{N_{\rm LNV}}{N_{\rm LNC}} = \frac{\Delta M^2}{\Delta M^2 + 2\Gamma^2} = \begin{cases} \approx 0 & \text{No LNV induced by oscillations} \\ > 0 & \text{LNV can be induced by oscillations} \end{cases}$$

<u>Decoherence effects</u> can be included by an effective "damping term" λ in the oscillation formula:

$$P_{
m osc}^{
m {\tiny LNC/LNV}}(au) = rac{1\pm\cos(\Delta M au)\exp(-\lambda)}{2}$$

Ratio of LNV over LNC events between t_1 and t_2 :

S.A., J. Hajer, J. Rosskopp (arXiv:2210.10738)

... can have a strong impacton the R_{II} ratio

Damping parameter λ calculated (for the LHC) in: S.A., J, Hajer, J. Rosskopp (arXiv:2307.06208)

Damping effects from decoherence (for HNLs at LHC) can have a strong impact on R_{II}

coloured: including decoherence effects which induce damping of the heavy neutrino-antineutrino oscillations

S.A., J, Hajer, J. Rosskopp (arXiv:2307.06208)

Main messages/Conclusions

*) Scenario: SM + HNLs (with masses > 5 GeV), barring fine-tuning

- Collider testable low-scale seesaw models* feature pseudo-Dirac pairs of heavy neutrinos (L approx. symm., small mass splitting ΔM)
- ► LNV? → Can be induced by heavy neutrino-antineutrino oscillations
- Developments in the recent years: S.A., J. Rosskopp (arXiv:2012.05763)
 - QFT calculation of oscillations (LO and NLO, decoherence effects)
 - Phenomenological (pSPSS) benchmark model & Madgraph patch for including the oscillations in collider simulations

S.A., J. Hajer, J. Rosskopp (arXiv:2210.10738)

- Oscillations can be resolvable at HL-LHC (for benchmark parameters) S.A., J, Hajer, J. Rosskopp (arXiv:2212.00562)
- From QFT calculation: Decoherence effects can have a large impact, e.g. enhance the total ratio of LNV/LNC events (known as R_{II} ratio)
- Oscillations @ FCC-ee: S.A., J. Hajer, J. Rosskopp (arXiv:2307.06208) S.A., J. Hajer, B.M.S. Oliviera (arXiv:2308.07297, arXiv:2408.01389)

Thanks for your attention!