Cosmic Axion Background from the Primordial Bath

Francesco D'Eramo

Università degli Studi di Padova

International Workshop on Baryon and Lepton Number Violation (BLV2024) Karlsruhe Institute of Technology (KIT) — 10 October 2024

Virtues of the QCD Axion

Plan for today: Hot Axions

Axions produced with kinetic energy much larger than their mass (i.e. "hot")

I. Production

Processes with particles from the primordial thermal bath

Dark radiation or warm dark matter

Unavoidable Thermal Production

Scatterings and/or decays of thermal bath particles (axion energy » m_a, i.e. "hot")

Observable Effects

Warm Dark Matter

If $m_a \sim eV$ we have a warm dark matter component (exactly as neutrinos in the standard model)

QCD Axion or ALPs?

Axion-Like-Particles (ALPs) are ubiquitous in extension of the standard model

- Pseudo-Nambu-Goldstone-bosons
- Axions in string theory

QCD AxionALPs
$$m_a \simeq 5.7 \left(\frac{10^9 \, {\rm GeV}}{f_a} \right) \, {\rm meV}$$
 $m_a \simeq \Lambda_X^2 / f_X$

Results in this talk mostly about the QCD axion (easily generalized when the mass is negligible)

How to Predict ΔN_{eff}

ΔNeff - I: Instantaneous decoupling

- Assume they thermalize at early times
- Estimate the decoupling temperature from $\Gamma(T_D) = H(T_D)$

How to Predict ΔN_{eff}

<u>ΔNeff - I: Instantaneous decoupling</u>

- Assume they thermalize at early times
- Estimate the decoupling temperature from $\Gamma(T_D) = H(T_D)$

$\Delta Neff - II: Boltzmann equation for n_a$

- Track the number density of axions
- Convert the asymptotic result via the equilibrium distribution

$$\frac{dn_a}{dt} + 3Hn_a = \sum_{\alpha} \gamma_{\alpha} \qquad \qquad \Delta N_{\text{eff}} \simeq 74.85 \ Y_a^{4/3}$$

 $\alpha = \text{Production processes}$

How to Predict ΔN_{eff}

<u>ΔNeff - I: Instantaneous decoupling</u>

- Assume they thermalize at early times
- Estimate the decoupling temperature from $\Gamma(T_D) = H(T_D)$

$\Delta Neff - II: Boltzmann equation for n_a$

- Track the number density of axions
- Convert the asymptotic result via the equilibrium distribution

KSVZ Axion

DFSZ Axion

FD, Hajkarim, Yun, **JHEP 10 (2021)**

Finite QCD Axion Mass Effects?

Planck: tension with astrophysics and axion mass non-negligible

Finite axion mass

- Pion scatterings Ferreira et al., Phys.Rev.D 103 (2021) Notari et al., Phys.Rev.Lett. 131 (2023) Bianchini et al., arXiv:2310.08169
- Gluon, photon couplings Caloni et al., JCAP 09 (2022)
- KSVZ and DFSZ FD et al., **JCAP 09 (2022)**

Axion Mass Bound

FD, Di Valentino, Giarè, Hajkarim, Melchiorri, Mena, Renzi, Yun, JCAP 09 (2022)

A Minor Variation: FV Axions

Target of several terrestrial experiments

What about their role in the early universe?

Current and future cosmological bounds competitive (or sometimes even better!) than terrestrial searches

FD, Yun, **Phys.Rev.D** 105 (2022)

Back to the Phase-Space

Model-independent analysis: generic production of a light X

$$\mathcal{B}_1 \ldots \mathcal{B}_n \to \mathcal{B}_{n+1} \ldots \mathcal{B}_m X$$

$$\frac{df_X(k,t)}{dt} = \left(1 - \frac{f_X(k,t)}{f_X^{\text{eq}}(k,t)}\right) \mathcal{C}_{n \to mX}(k,t)$$

- I. Keep track of phase-space and compute the energy density
- 2. Quantum statistical effects take into account
- 3. Energy exchanged with the thermal bath accounted for

Spectral distortions detectable in the future!

Axion-Fermion Interactions

Difference detectable in the future!

Axion-Fermion Interactions

FD, Lenoci, **in preparation**

Peccei-Quinn Mechanism and the QCD Axion

Motivated and testable scenario rich of cosmological consequences

Thermal Axions

Complementary to other probes of the PQ mechanism Distinct signatures of ALPs coupled to standard model particles

Outlook

FD, Di Valentino, Giarè, Hajkarim, Melchiorri, Mena, Renzi, Yun, **JCAP 09 (2022)**

Axion cosmological mass bound

Outlook

