On the Neutrino Mass Ordering

-

9th International Workshop on

NUMBER

Renata Zukanovich Funchal - Instituto de Física, University of São Paulo

Based on S. J. Parke, RZF - arXiv:2404.0873

Oct 8-11, 2024 Karlsruhe Institute of Technology

ÊÊÊÊ

Neutrino Flavor Oscillations Driven by Mass and Mixing

flavor eigenstates
$$\nu_{\alpha} = \sum_{i=1}^{3} U_{\alpha i} \, \nu_{i} \quad \alpha = 0$$

two independent mass scales have been identified

$$\Delta m_{21}^2 \equiv m_2^2 - m_1^2 \approx 7.4 \times$$

$$\Delta m_{32}^2 = \Delta m_{31}^2 - \Delta m_{21}^2$$

- $10^{-5} \,\mathrm{eV}^2$ (so-called solar scale)
- $\Delta m_{31}^2 \equiv m_3^2 m_1^2 \approx \pm 2.5 \times 10^{-3} \,\text{eV}^2$ (so-called atm. scale)

$$|\Delta m_{31}^2| \approx |\Delta m_{32}^2| = \Delta m_{atm}^2$$

 u_{μ}

$|U_{e1}| > |U_{e2}| > |U_{e3}|$

for experiments where

the oscillation phase

 $\nu_e
ightarrow \nu$

survival probabilities

[H. Nunokawa, S. J. Parke, RZF (2005)]

$$L =$$
 baseline
 $E =$ neutrino energy

$$\frac{1}{e}/\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}$$
 $\frac{1}{\mu}/\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}$

effectively described by a different

 $\Delta m_{\rm atm}^2$

 $\neq \Delta m_{31}^2 \neq \Delta m_{32}^2$

• for experiments where $\Delta_{21} \equiv \frac{\Delta m_{21}^2 L}{4E} \ll 1$

$$P_{\nu_e \to \nu_e} = 1 - \sin^2 2\theta_{13} \sin^2 \Delta_{ee} + \Delta m_{ee}^2 \equiv \Delta m_{31}^2 \cos^2 \theta_{12} + \Delta m_{32}^2 \sin^2 \theta_{13}$$

$$\nu_e \to \nu_e / \overline{\nu}_e \to \overline{\nu}_e$$

in vacuum

[H. Nunokawa, S. J. Parke, RZF (2005)]

$$\Delta_{ee} \equiv \frac{\Delta m_{ee}^2 L}{4E}$$

• for experiments where Δ_{21}

$$P_{\nu_e \to \nu_e} = 1 - \sin^2 2\theta_{13} \sin^2 \Delta_{ee} + \Delta m_{ee}^2 \equiv \Delta m_{31}^2 \cos^2 \theta_{12} + \Delta m_{32}^2 \sin^2 \theta_{13}$$

 ν_e - , $\rightarrow \nu_e / \overline{\nu}_e \rightarrow \overline{\nu}_e$

in vacuum

[H. Nunokawa, S. J. Parke, RZF (2005)]

$\mathcal{O}(\Delta_{21}^2)$

DayaBay/RENO

 $\Delta_{21}(\langle E \rangle \sim 4 \,\mathrm{MeV},\mathrm{L} \sim 1 \,\mathrm{km}) \sim 2 \,\%$

$$\Delta_{ee} \equiv \frac{\Delta m_{ee}^2 L}{4E}$$

for experiments where

$$P_{\nu_e \to \nu_e} = 1 - \sin^2 2\theta_{13} \sin^2 \Delta_{ee} + \mathcal{O}(\Delta_{21}^2)$$
$$\Delta m_{ee}^2 \equiv \Delta m_{31}^2 \cos^2 \theta_{12} + \Delta m_{32}^2 \sin^2 \theta_{21}$$

 $\Delta m_{31}^2 \Big|_{e}^{NO} = |\Delta m_{ee}^2| + \Delta m_{21}^2 \sin^2 \theta_{12}$

 $\nu_e \to \nu_e / \overline{\nu}_e \to \overline{\nu}_e$

in vacuum

[H. Nunokawa, S. J. Parke, RZF (2005)]

 $\Delta_{21}(\langle E \rangle \sim 4 \,\mathrm{MeV},\mathrm{L} \sim 1 \,\mathrm{km}) \sim 2 \,\%$

$$\Delta_{ee} \equiv \frac{\Delta m_{ee}^2 L}{4E}$$

for experiments where

$$P_{\nu_e \to \nu_e} = 1 - \sin^2 2\theta_{13} \sin^2 \Delta_{ee} + \mathcal{O}(\Delta_{21}^2)$$
$$\Delta m_{ee}^2 \equiv \Delta m_{31}^2 \cos^2 \theta_{12} + \Delta m_{32}^2 \sin^2 \theta_{21}$$
$$\Delta m_{31}^2 |_e^{NO} = |\Delta m_{ee}^2| + \Delta m_{21}^2 \sin^2 \theta_{12}$$

 $\nu_e \to \nu_e / \overline{\nu}_e \to \overline{\nu}_e$

in vacuum

[H. Nunokawa, S. J. Parke, RZF (2005)]

 $\Delta_{21}(\langle E \rangle \sim 4 \,\mathrm{MeV}, \mathrm{L} \sim 1 \,\mathrm{km}) \sim 2 \,\%$

effective scale for ν_e disappearance

$$\Delta_{ee} \equiv \frac{\Delta m_{ee}^2 L}{4E}$$

 $|\Delta m_{32}^2|_e^{10} = |\Delta m_{ee}^2| + \Delta m_{21}^2 \cos^2 \theta_{12}$

for experiments where

$$P_{\nu_e \to \nu_e} = 1 - \sin^2 2\theta_{13} \sin^2 \Delta_{ee} + \mathcal{O}(\Delta_{21}^2)$$
$$\Delta m_{ee}^2 \equiv \Delta m_{31}^2 \cos^2 \theta_{12} + \Delta m_{32}^2 \sin^2 \theta_{21}$$

$$\Delta m_{31}^2 \Big|_e^{\text{NO}} = |\Delta m_{ee}^2| + \Delta m_{21}^2 \sin^2 \theta \\ |\Delta m_{32}^2|_e^{\text{IO}} = |\Delta m_{ee}^2| + \Delta m_{21}^2 \cos^2 \theta \\$$

 $\rightarrow \nu_e / \overline{\nu}_e \rightarrow \overline{\nu}_e$

in vacuum

[H. Nunokawa, S. J. Parke, RZF (2005)]

 $\Delta_{21}(\langle E \rangle \sim 4 \,\mathrm{MeV},\mathrm{L} \sim 1 \,\mathrm{km}) \sim 2 \,\%$

12+12

• for experiments where $\Delta_{21} \equiv \frac{\Delta m_{21}^2 L}{4E} \ll 1$

$$P_{\nu_{\mu} \to \nu_{\mu}} = 1 - \sin^2 2\theta_{\text{eff}} \sin^2 \Delta_{\mu\mu} + \Delta m_{\mu\mu}^2 \equiv \Delta m_{31}^2 \sin^2 \theta_{12} + \Delta m_{32}^2 \cos^2 \theta_{12}$$

in vacuum

[H. Nunokawa, S. J. Parke, RZF (2005)]

$\theta_{21} + \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23} \cos \delta \Delta m_{21}^2$

effective scale for ν_{μ}

disappearance

$$\Delta_{\mu\mu} \equiv \frac{\Delta m_{\mu\mu}^2 L}{4E}$$

• for experiments where $\Delta_{21} \equiv \frac{\Delta m_{21}^2 L}{4E} \ll 1$

$$P_{\nu_{\mu} \to \nu_{\mu}} = 1 - \sin^2 2\theta_{\text{eff}} \sin^2 \Delta_{\mu\mu} + \Delta m_{\mu\mu}^2 \equiv \Delta m_{31}^2 \sin^2 \theta_{12} + \Delta m_{32}^2 \cos^2 \theta_{12}$$

in vacuum

T2K $\Delta_{21}(\langle E \rangle \sim 0.6 \,\text{GeV}, L \sim 295 \,\text{km}) \sim 5 \,\%$ **NOvA** $\Delta_{21}(\langle E \rangle \sim 2.0 \,\text{GeV}, L \sim 810 \,\text{km}) \sim 4 \,\%$

$\theta_{21} + \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23} \cos \delta \Delta m_{21}^2$

effective scale for ν_{μ}

disappearance

$$\Delta_{\mu\mu} \equiv \frac{\Delta m_{\mu\mu}^2 L}{4E}$$

- for experiments where $\Delta_{21} \equiv \frac{\Delta m_{21}^2 L}{4F} \ll 1$
- $P_{\nu_{\mu} \to \nu_{\mu}} = 1 \sin^2 2\theta_{\text{eff}} \sin^2 \Delta_{\mu\mu} + \mathcal{O}(\Delta_{21}^2)$

 $\Delta m_{31}^2 |_{\mu}^{NO} = |\Delta m_{\mu\mu}^2| + \Delta m_{21}^2 (\cos^2 \theta_{12} - \sin \theta_{13} \cos \delta^{NO})$

 $\rightarrow \nu_{\mu}/\nu_{\mu}$ -

in vacuum

T2K $\Delta_{21}(\langle E \rangle \sim 0.6 \,\text{GeV}, L \sim 295 \,\text{km}) \sim 5 \,\%$ **NOvA** $\Delta_{21}(\langle E \rangle \sim 2.0 \,\text{GeV}, L \sim 810 \,\text{km}) \sim 4 \,\%$

$\Delta m_{uu}^2 \equiv \Delta m_{31}^2 \sin^2 \theta_{12} + \Delta m_{32}^2 \cos^2 \theta_{21} + \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23} \cos \delta \Delta m_{21}^2$

• for experiments where $\Delta_{21} \equiv \frac{\Delta m_{21}^2 L}{4E} \ll 1$

$$P_{\nu_{\mu} \to \nu_{\mu}} = 1 - \sin^{2} 2\theta_{\text{eff}} \sin^{2} \Delta_{\mu\mu} + \Delta m_{\mu\mu}^{2} \equiv \Delta m_{31}^{2} \sin^{2} \theta_{12} + \Delta m_{32}^{2} \cos^{2} \Delta m_{31}^{2} |_{\mu}^{\text{NO}} = |\Delta m_{\mu\mu}^{2}| + \Delta m_{21}^{2} (\cos^{2} |\Delta m_{32}^{2}|_{\mu}^{\text{IO}} = |\Delta m_{\mu\mu}^{2}| + \Delta m_{21}^{2} (\sin^{2} |\Delta m_{32}^{2}|_{\mu}^{\text{IO}} = |\Delta m_{\mu\mu}^{2}| + \Delta m_{21}^{2} (\sin^{2} |\Delta m_{32}^{2}|_{\mu}^{\text{IO}} = |\Delta m_{\mu\mu}^{2}| + \Delta m_{21}^{2} (\sin^{2} |\Delta m_{32}^{2}|_{\mu}^{\text{IO}} = |\Delta m_{\mu\mu}^{2}| + \Delta m_{21}^{2} (\sin^{2} |\Delta m_{32}^{2}|_{\mu}^{\text{IO}} = |\Delta m_{\mu\mu}^{2}| + \Delta m_{21}^{2} (\sin^{2} |\Delta m_{32}^{2}|_{\mu}^{\text{IO}} = |\Delta m_{\mu\mu}^{2}| + \Delta m_{21}^{2} (\sin^{2} |\Delta m_{32}^{2}|_{\mu}^{\text{IO}} = |\Delta m_{\mu\mu}^{2}| + \Delta m_{21}^{2} (\sin^{2} |\Delta m_{32}^{2}|_{\mu}^{\text{IO}} = |\Delta m_{\mu\mu}^{2}| + \Delta m_{21}^{2} (\sin^{2} |\Delta m_{32}^{2}|_{\mu}^{\text{IO}} = |\Delta m_{\mu\mu}^{2}| + \Delta m_{21}^{2} (\sin^{2} |\Delta m_{32}^{2}|_{\mu}^{\text{IO}} = |\Delta m_{\mu\mu}^{2}|_{\mu}^{\text{IO}} = |\Delta m_{\mu\mu}^{2}|_{\mu}$$

in vacuum

T2K $\Delta_{21}(\langle E \rangle \sim 0.6 \,\text{GeV}, L \sim 295 \,\text{km}) \sim 5 \,\%$ $\Delta_{21}(\langle E \rangle \sim 2.0 \,\mathrm{GeV}, \mathrm{L} \sim 810 \,\mathrm{km}) \sim 4\,\%$

 $\theta_{21} + \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23} \cos \delta \Delta m_{21}^2$

 $\theta_{12} - \sin \theta_{13} \cos \delta^{\text{NO}}$

effective scale for ν_{μ} disappearance

 $in^2 \theta_{12} + \sin \theta_{13} \cos \delta^{IO}$

• for experiments where $\Delta_{21} \equiv \frac{\Delta m_{21}^2 L}{\Delta F} \ll 1$

in vacuum

T2K $\Delta_{21}(\langle E \rangle \sim 0.6 \,\text{GeV}, L \sim 295 \,\text{km}) \sim 5 \,\%$ $\Delta_{21}(\langle E \rangle \sim 2.0 \,\mathrm{GeV}, \mathrm{L} \sim 810 \,\mathrm{km}) \sim 4 \,\%$

 $\theta_{21} + \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23} \cos \delta \Delta m_{21}^2$

 $\theta_{12} - \sin \theta_{13} \cos \delta^{\text{NO}}$

 $\left(\Delta m_{31}^2 \Big|_{\mu}^{\text{NO}} - \Delta m_{31}^2 \Big|_{e}^{\text{NO}}\right) + \left(\left|\Delta m_{32}^2 \right|_{e}^{\text{IO}} - \left|\Delta m_{32}^2 \right|_{\mu}^{\text{IO}}\right) = \left(2\cos 2\theta_{12} - 2\sin \theta_{13}\overline{\cos \delta}\right)\Delta m_{21}^2$

[S. J. Parke, RZF arXiv:2404.0873]

 $(2.4 - 0.9 \overline{\cos \delta}) \% |\Delta m_{\text{atm}}^2|$

$$(\Delta m_{31}^2 |_{\mu}^{NO} - \Delta m_{31}^2 |_{e}^{NO}) + (|\Delta m_{32}^2 |_{e}^{IO} - |\Delta m_{32}^2 |_{\mu}^{IO}) = (2\cos 2\theta_{12} - 2\sin \theta_{13} \overline{\cos \delta}) \Delta m_{21}^2$$

$$(2.4 - 0.9 \overline{\cos \delta}) \% |\Delta m_{atm}^2|$$

$$\Delta m_{31}^2 |_{\mu}^{NO} = \Delta m_{31}^2 |_{e}^{NO} \quad \text{if NO is true} \quad \Delta m_{31}^2 |_{T2K+NOvA}^{NO} = (2.516 \pm 0.031) \times 10^{-3}$$

[S. J. Parke, RZF <u>arXiv:2404.0873</u>]

$$(\Delta m_{31}^2 |_{\mu}^{NO} - \Delta m_{31}^2 |_{e}^{NO}) + (|\Delta m_{32}^2 |_{e}^{IO} - |\Delta m_{32}^2 |_{\mu}^{IO}) = (2\cos 2\theta_{12} - 2\sin \theta_{13} \overline{\cos \delta}) \Delta m_{21}^2$$

$$(2.4 - 0.9 \overline{\cos \delta}) \% |\Delta m_{atm}^2|$$

$$(2.4 - 0.9 \overline{\cos \delta}) \% |\Delta m_{atm}^2|$$

$$(\Delta m_{31}^2 |_{\mu}^{NO} = \Delta m_{31}^2 |_{e}^{NO} \quad \text{if NO is true} \quad \Delta m_{31}^2 |_{T2K+NOVA}^{NO} = (2.516 \pm 0.031) \times 10^{-3}$$

$$|\Delta m_{32}^2 |_{e}^{IO} = |\Delta m_{32}^2 |_{\mu}^{IO} \quad \text{if IO is true} \quad |\Delta m_{32}^2 |_{T2K+NOVA}^{IO} = (2.485 \pm 0.031) \times 10^{-3}$$

[S. J. Parke, RZF <u>arXiv:2404.0873</u>]

$$(\Delta m_{31}^2 |_{\mu}^{\text{NO}} - \Delta m_{31}^2 |_{e}^{\text{NO}}) + (|\Delta m_{32}^2 |_{e}^{\text{IO}} - |\Delta m_{32}^2 |_{e}^{\text{IO}}) + (|\Delta m_{32}^2 |_{e}^{\text{IO}} - |\Delta m_{32}^2 |_{e}^{\text{IO}}) + (|\Delta m_{32}^2$$

 $\Delta m_{31}^2 \Big|_{\mu}^{\text{NO}} = \Delta m_{31}^2 \Big|_{e}^{\text{NO}}$ if NO is true

 $|\Delta m_{32}^2|_e^{\rm IO} = |\Delta m_{32}^2|_u^{\rm IO}$ if IO is true

[S. J. Parke, RZF arXiv:2404.0873]

NuFIT We already see this effect in the current data

NuFIT We already see this effect in th

NuFIT We already see this effect in th

NuFIT We already see this effect in th

JUNO Disappearance Measurement $\overline{\nu}_e$ - $\rightarrow \overline{\mathcal{V}}_{\rho}$ JUNO 100 days **6 years** Taishan NPP Δm_{21}^2 1.0 % 0.3 % ~52.5 km 2×4.6 GW_{th} TAO 2.5 m Yangjiang NPP 6×2.9 GW_{th} $\sin^2 \theta_{12}$ 1.9% 0.5 % $|\Delta m_{\rho\rho}^2|$ 0.8 % 0.2 % 1.0 $-\Delta m^2_{ee}$ [NO] = +2.530 x 10⁻³ eV² $-\Delta m^2_{ee}$ [IO] = -2.548 x 10⁻³ eV² **Jiangmen Underground Neutrino** 0.8 **Observatory** ${\boldsymbol{\rho}}_{{\bar{\gamma}}_{e} ightarrow {\bar{\gamma}}_{e}}({\mathbf{E}})$ - a 20 kton liquid scintillator 0.6 detector $\Delta_{21}=\frac{\pi}{-}$ 0.4 - @ 53 km from Yangjiang & **Taishan Nuclear Power Plants** L = 53 km 0.2 - 26.6 GWth

- in China - starting in 2024

0.0

2

10

w/o Energy Resolution

E [MeV]

9

REACTOR NEUTRINO EXPERIMENT $\overline{\nu}_{\rho} \rightarrow \overline{\nu}_{\rho}$ medium baseline reactor neutrino detector

low and high frequency modes present

[S.T.Petcov & M Piai (2002) & S. Choubey et al. (2003)]

REACTOR NEUTRINO EXPERIMENT $\overline{\nu}_{\rho} \rightarrow \overline{\nu}_{\rho}$ medium baseline reactor neutrino detector

$$P_{\overline{\nu}_e \to \overline{\nu}_e} = 1 - \frac{1}{2} \sin^2 2\theta_{13} \left[1 - \sqrt{1 - 1} \right]$$

[H. Minakata, H. Nunokawa, S. J. Parke, RZF (2007)] Solar term

$$P_{\odot} = \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \Delta_{21}$$

 $\Delta m_{ij}^2 L$ $\Delta_{ii} \equiv -$

$\sin^2 2\theta_{12} \sin^2 \Delta_{21} \cos(2|\Delta_{ee}| \pm \Phi_{\odot}) - P_{\odot}$

in vacuum

$$P_{\overline{\nu}_e \to \overline{\nu}_e} = 1 - \frac{1}{2} \sin^2 2\theta_{13} \left[1 - \sqrt{1 - 1} \right]$$

[H. Minakata, H. Nunokawa, S. J. Parke, RZF (2007)] Solar term

$$P_{\odot} = \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \Delta_{21}$$

 $\Delta m_{ij}^2 L$ $\Delta_{ii} \equiv -$

$\sin^2 2\theta_{12} \sin^2 \Delta_{21} \cos(2|\Delta_{ee}| \pm \Phi_{\odot}) - P_{\odot}$

in vacuum

$$P_{\overline{\nu}_e \to \overline{\nu}_e} = 1 - \frac{1}{2} \sin^2 2\theta_{13} \left[1 - \sqrt{1 - 1} \right]$$

[H. Minakata, H. Nunokawa, S. J. Parke, RZF (2007)] Solar term

$$P_{\odot} = \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \Delta_{21}$$

$$\Delta m_{ee}^2 \equiv \Delta m_{31}^2$$

 $\Delta m_{ij}^2 L$ $\Delta_{ii} \equiv -$

 $\sin^2 2\theta_{12} \sin^2 \Delta_{21} \cos(2|\Delta_{ee}| \pm \Phi_{\odot}) - P_{\odot}$ in vacuum $\cos^2 \theta_{12} + \Delta m_{32}^2 \sin^2 \theta_{21}$

$$P_{\overline{\nu}_{e} \to \overline{\nu}_{e}} = 1 - \frac{1}{2} \sin^{2} 2\theta_{13} \left[1 - \sqrt{1 - \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21}} \cos(2|\Delta_{ee}| \pm \Phi_{\odot}) \right] - \frac{1}{2}$$

$$(H. Minakata, H. Nunokawa, S. J. Parke, RZF (2007)) in vac
solar term
$$P_{\odot} = \sin^{2} 2\theta_{12} \cos^{4} \theta_{13} \sin^{2} \Delta_{21}$$

$$\Phi_{\odot} = \arctan(\cos 2\theta_{12} \tan \Delta_{21}) - \Delta_{21} \cos^{4} \theta_{\odot} = \arctan(\cos^{2} \theta_{12} \tan \Delta_{21}) - \Delta_{21} \cos^{4} \theta_{\odot} = \Delta m_{31}^{2} \cos^{2} \theta_{12} + \Delta m_{32}^{2} \sin^{2} \theta_{21}$$$$

S

$$1 - \sqrt{1 - \sin^2 2\theta_{12} \sin^2 \Delta_{21}} \cos(2|\Delta_{ee}| \pm \Phi_{\odot})] - h$$

in vac
phase
$$\Phi_{\odot} = \arctan(\cos 2\theta_{12} \tan \Delta_{21}) - \Delta_{21} \cos^2 \theta_{12}$$
$$\Delta m_{ee}^2 \equiv \Delta m_{31}^2 \cos^2 \theta_{12} + \Delta m_{32}^2 \sin^2 \theta_{21}$$

 $\Delta_{ij} \equiv \frac{\Delta m_{ij}^2 L}{4E} \sim \frac{\pi}{2}$

$$P_{\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}} = 1 - \frac{1}{2} \sin^{2} 2\theta_{13} \left[1 - \sqrt{1 - \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21}} \cos(2\Delta_{ee} \pm \Phi_{\odot}) \right] - \mu_{eee} + \Phi_{eee} + \Phi_{eee}$$

S

$$1 - \sqrt{1 - \sin^2 2\theta_{12} \sin^2 \Delta_{21}} \cos(2\Delta_{ee} \pm \Phi_{\odot}) - \mu$$

in vac
phase
$$\Phi_{\odot} = \arctan(\cos 2\theta_{12} \tan \Delta_{21}) - \Delta_{21} \cos^2 \theta_{12}$$
$$\Delta m_{ee}^2 \equiv \Delta m_{31}^2 \cos^2 \theta_{12} + \Delta m_{32}^2 \sin^2 \theta_{21}$$

 $\Delta_{ij} \equiv \frac{\Delta m_{ij}^2 L}{4E} \sim \frac{\pi}{2}$

JUNO Disappearance Measurement

 $\overline{\nu}_{e}$

 $\overline{\nu}_{e}$

Mass Ordering Flagship measurement

[D. V. Forero, S. J. Parke, C. A. Ternes, RZF (2021)]

 $|\Delta m_{ee}^2|_{\rm IIINO}^{\rm IO} = \Delta m_{ee}^2|_{\rm IIINO}^{\rm NO} + 1.8 \times 10^{-5} \, \rm eV^2$

JUNO Disappearance Measurement

Mass Ordering Flagship measurement

[D. V. Forero, S. J. Parke, C. A. Ternes, RZF (2021)]

$|\Delta m_{ee}^2|_{\text{IIINO}}^{\text{IO}} = \Delta m_{ee}^2|_{\text{IIINO}}^{\text{NO}} + 1.8 \times 10^{-5} \text{ eV}^2$

Even before they can determine the Ordering ... They can determine both values precisely i.e. two degenerate solutions

 $\overline{\mathcal{V}}_{\rho}$

[JUNO Collab. arXiv:2204.13249]

2.4% (DayaBay) $\rightarrow 0.8\%$ in 100 days

[S. J. Parke, RZF <u>arXiv:2404.0873</u>]

$$\Delta_{\text{JNO}}^{\text{O}} = \Delta m_{31}^2 |_{\text{JUNO}}^{\text{NO}} + 4.7 \times 10^{-5} \text{eV}^2$$

$$\overline{\nu}_e \to \overline{\nu}_e$$

t - A.N. Khan, H.Nunokawa, S.J. Parke (2020) $\Delta m^2_{21} \rightarrow -1.1 \%$ $\sin^2 \theta_{12} \rightarrow 0.2 \%$

[S. J. Parke, RZF arXiv:2404.0873]

$$\Delta D_{\text{JNO}} = \Delta m_{31}^2 |_{\text{JUNO}}^{\text{NO}} + 4.7 \times 10^{-5} \text{eV}^2$$

$$\overline{\nu}_e \to \overline{\nu}_e$$

t - A.N. Khan, H.Nunokawa, S.J. Parke (2020) $\Delta m_{21}^2 \rightarrow -1.1 \%$ $\sin^2 \theta_{12} \rightarrow 0.2 \%$

$\Delta m_{31}^2 |_{\text{T2K+NOvA}}^{\text{NO}} = (2.516 \pm 0.031) \times 10^{-3} \text{eV}^2$

$|\Delta m_{32}^2|_{\text{T2K+NOvA}}^{\text{IO}} = (2.485 \pm 0.031) \times 10^{-3} \text{eV}^2$

[S. J. Parke, RZF arXiv:2404.0873]

$$\Delta m_{31}^{2} |_{\text{JUNO}}^{\text{NO}} + 4.7 \times 10^{-5} \text{eV}^{2}$$

$$\overline{\nu}_e \to \overline{\nu}_e$$

t - A.N. Khan, H.Nunokawa, S.J. Parke (2020) $\Delta m^2_{21} \rightarrow -1.1 \%$ $\sin^2 \theta_{12} \rightarrow 0.2 \%$

$\Delta m_{31}^2 |_{\text{T2K+NOvA}}^{\text{NO}} = (2.516 \pm 0.031) \times 10^{-3} \text{eV}^2$

t - P. B. Denton, S.J. Parke (2024) matter effects in $\nu_{\mu} \rightarrow \nu_{e}$ cancel $\nu_{\mu} \rightarrow \nu_{\tau}$

$$\nu_{\mu} \to \nu_{\mu}/\bar{\nu}_{\mu} \to \bar{\iota}$$

$|\Delta m_{32}^2|_{\text{T2K+NOvA}}^{\text{IO}} = (2.485 \pm 0.031) \times 10^{-3} \text{eV}^2$

Conclusion

- the determination of the neutrino mass ordering is relevant for:
 - model building
 - neutrinoless double beta decay experiments
 - beta decay experiments
 - cosmic neutrinos background
 - cosmology

- it is possible that we will know the ordering soon before DUNE/HYPER-K (matter effect)
 - by combining two types of disappearance measurements in vacuum

Hiroshi Nunokawa¹,^{*} Stephen Parke²,[†] and Renata Zukanovich Funchal³[‡]

Another possible way to determine

the Neutrino Mass Hierarchy