Left-Right Symmetric Model with Double Seesaw Mechanism: Its LNV imprints

Prativa Pritimita

Indian Institute of Technology (IIT), Bombay and Indian Institute of Science (IISc), Bangalore

BLV 2024, KIT, Karlsruhe

October 10, 2024

Prativa Pritimita (IIT Bombay, IISc Bangalore)

 $0\nu\beta\beta$ in LRSM Double seesaw

Neutrinoless double beta decay in Left-Right symmetric model with double seesaw mechanism

- Phys.Rev.D 107 (2023) 7, 075037
- S. Patra, S. Petcov, P. Pritimita, P. Sahu

・ 何 ト ・ ヨ ト ・ ヨ ト

- 1 Neutrinoless Double Beta decay process
- 2 Left-right symmetric model and various aspect of seesaw
- 3 Double Seesaw effects to Neutrinoless Double Beta Decay in LRSM
- 4 Numerical Results
- **5** Conclusion

くぼう くほう くほう

Standard Mechanism for $0\nu\beta\beta$ decay

 Neutrino Oscillation experiments have revealed that neutrinos of different flavour mix with each other and have non-zero masses.

 $u_{\alpha} = U_{\alpha i} \nu_i$ with mass eigenvalues m_i .

Charged current interaction in mass basis:

$$\mathcal{L}_{\rm CC}^{\ell} = \frac{g_L}{\sqrt{2}} \,\overline{e}_{Li} \,\gamma^{\mu} \, U_{\alpha i} \nu_i \, W_{\mu_L} + {\rm h.c.}$$

 $0\nu\beta\beta$ through standard mechanism

Half-life of Isotope: Measure of $0\nu\beta\beta$ decay process

If light Majorana neutrinos are the only contribution to the $0\nu\beta\beta$ transition, then the half-life can be expressed as,

$$\frac{1}{T_{1/2}^{0\nu}} = \left[T_{1/2}^{0\nu}\right]^{-1} = g_{\rm A}^4 \, G_{01}^{0\nu} \, |\mathcal{M}_{\nu}^{0\nu}|^2 \, |\eta_{\nu}|^2 = G_{01}^{0\nu} \left|\frac{\mathcal{M}_{\nu}^{0\nu}}{m_{e}}\right|^2 |m_{\beta\beta}|^2$$

- $\mathcal{M}^{0\nu}_{\nu}$: Nuclear Matrix Elements (NME) for $0\nu\beta\beta$ transition.
- $G_{01}^{0\nu}$: Phase space factor
- η_ν: A dimensionless particle physics parameter a measure of Lepton Number Violation involving neutrino masses and

corresponding mixing. $m_{\beta\beta} \equiv m_{ee}^{\nu} \equiv m_e \eta_{\nu} = \left| \sum_{i=1}^{3} U_{ei}^2 m_i \right|$

 $g_{\rm A}$: axial coupling constant

Left-Right Symmetric Model

[Mohapatra:1974, Pati:1974, Senjanovic:1975, Senjanovic:1978, Mohapatra:1979, Mohapatra:1980]

Gauge Symmetry

$$\mathcal{G}_{LR} \equiv SU(2)_L imes SU(2)_R imes U(1)_{B-L} imes SU(3)_C$$

with electric charge relation

$$\mathbf{Q} = \mathbf{I}_{3\mathsf{L}} + \mathbf{I}_{3\mathsf{R}} + \frac{\mathsf{B} - \mathsf{L}}{2}$$

Particle Content

$$\begin{aligned} Q_L &= \begin{pmatrix} u_L \\ d_L \end{pmatrix} \equiv [2, 1, \frac{1}{3}, 3], \quad Q_R = \begin{pmatrix} u_R \\ d_R \end{pmatrix} \equiv [1, 2, \frac{1}{3}, 3], \\ \ell_L &= \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \equiv [2, 1, -1, 1], \quad \ell_R = \begin{pmatrix} \nu_R \\ e_R \end{pmatrix} \equiv [1, 2, -1, 1], \end{aligned}$$

Prativa Pritimita (IIT Bombay, IISc Bangalore)

- Neutral components of the scalar bidoublet Φ generate masses for charged leptons and Dirac mass for the light neutrinos.
- Light neutrino mass: purely Dirac
- NO LNV in theory

・ 同 ト ・ ヨ ト ・ ヨ ト

LRSM with scalar triplets: Manifest LRSM

- Scalar triplets Δ_L and Δ_R (carrying B − L charge 2) generate
 Majorana masses for light and heavy neutrinos.
- Mass matrix for neutral leptons in the basis (ν_L, N_R^c)

$$\mathcal{M}_{\nu} = \begin{pmatrix} M_L & M_D \\ M_D^T & M_R \end{pmatrix}, \ M_R \gg M_D$$

Type-(I+II) contribution to light neutrino masses,

$$m_{\nu}^{l} = -M_D M_R^{-1} M_D^T, \qquad m_{\nu}^{ll} = f v_L = f \langle \Delta_L^0 \rangle \,.$$

- $m_N \simeq M_R$, puerly Majorana
- $\Theta \simeq \frac{M_D}{M_R}$ light-heavy neutrino mixing: neglegible.

LRSM with sterile neutrinos: Low Scale Seesaw

- Usual quarks and leptons, plus one sterile neutrino $S_L \equiv [1, 1, 0]$ per generation
- The neutral lepton mass matrix in the basis (ν_L, N_B^c, S_L) is,

$$\mathcal{M} = \begin{pmatrix} \mathbf{0} & M_D & \mu_L \\ M_D^T & \mathbf{0} & M_{RS} \\ \mu_L^T & M_{RS}^T & M_S \end{pmatrix}$$

- *M_D* is the Dirac mass matrix connecting left-handed and right-handed neutrino fields ν_L - N_R
- *M_{RS}* and *μ_L* are Dirac mass terms connecting *N_R*-*S_L* and *ν_L*-*S_L* respectively,
- *M_S* is the bare Majorana mass matrix for sterile neutrinos *S_L*

イロト イポト イヨト イヨト

Inverse Seesaw:- Mass hierarchy assumed $M_{RS} > M_D \gg M_S$ and taking $\mu_L \rightarrow 0$, the resulting inverse seesaw mass formula for neutrinos

$$\mathcal{M} = \begin{pmatrix} 0 & M_D & 0 \\ M_D^T & 0 & M_{RS}^T \\ 0 & M_{RS} & M_S \end{pmatrix}$$
(1)

• light neutrino mass formula $m_{\nu} = \left(\frac{M_D}{M_{RS}}\right) M_S \left(\frac{M_D}{M_{RS}}\right)^T$

$$\left(\frac{m_{\nu}}{0.1 \text{ eV}}\right) = \left(\frac{M_D}{100 \text{ GeV}}\right)^2 \left(\frac{M_S}{\text{keV}}\right) \left(\frac{M_{RS}}{10^4 \text{ GeV}}\right)^{-2}$$

- light-heavy neutrino mixing: large $\Theta \simeq rac{M_D}{M_{BS}}$
- heavy neutrino masses: **pseudo-Dirac** $m_{N/S} \simeq M_{RS}$

Linear Seesaw:- Mass hierarchy assumed $M_{RS} > M_D \gg \mu_L$ and taking $M_S \rightarrow 0$, the resulting linear seesaw mass matrix structure

$$\mathcal{M}_{\nu} = \begin{pmatrix} 0 & M_D & \mu_L \\ M_D^T & 0 & M_{RS}^T \\ \mu_L^T & M_{RS} & 0 \end{pmatrix}$$
(2)

- light neutrino mass formula $m_{\nu} = M_D^T M_{RS}^{-1} \mu_L$ + transpose
- light-heavy neutrino mixing: large $\Theta \simeq \frac{M_D}{M_{PS}}$
- heavy neutrino masses: **pseudo-Dirac** $m_{N/S} \simeq M_{RS}$

Double Seesaw:-mass hierarchy $M_S \gg M_{RS} > M_D$ and $M_R \gg M_D$

$$\begin{bmatrix} \mathbf{0} & M_{D} & \mathbf{0} \\ M_{D}^{T} & \mathbf{0} & M_{RS} \\ \mathbf{0} & M_{RS}^{T} & M_{S} \end{bmatrix} \xrightarrow{M_{S} \gg M_{RS} \gg M_{D}} \begin{bmatrix} \mathbf{0} & M_{D} & \mathbf{0} \\ M_{D}^{T} & -M_{RS}M_{S}^{-1}M_{RS}^{T} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & M_{S} \end{bmatrix}$$
(3)
$$\begin{bmatrix} \mathbf{0} & M_{D} & \mathbf{0} \\ M_{D}^{T} & M_{R} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0} & M_{S} \end{bmatrix} \xrightarrow{M_{R} \gg M_{D}} \begin{bmatrix} -M_{D}M_{R}^{-1}M_{D}^{T} & \mathbf{0} & \mathbf{0} \\ 0 & M_{R} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0} & M_{S} \end{bmatrix}$$
(4)
$$m_{\nu} = -M_{D} \left(-M_{RS}M_{S}^{-1}M_{RS}^{T} \right)^{-1} M_{D}^{T} = \frac{M_{D}}{M_{RS}^{T}}M_{RS} \frac{M_{D}^{T}}{M_{RS}} \\ m_{N} = M_{R} = -M_{RS}M_{S}^{-1}M_{RS}^{T}, \\ m_{S} = M_{S}.$$
(5)

.∃ > .

< 17 ▶

- Different choice of M_D and M_{RS} are possible [A. Y. Smirnov:1993, M. Lindner, M. A. Schmidt, and A. Y. Smirnov 2005, P. O. Ludl and A. Y. Smirnov 2015, B. Bajc and A. Y. Smirnov 2016, A. Y. Smirnov and X.-J. Xu 2018]
- we have considered $M_D = k_d I$ and $M_{BS} = k_{rs} I$, where k_d and k_{rs} are real constants with $|k_d| < |k_{rs}|$. This means, $\left(\frac{M_D M_{RS}^{-1}}{k_{rs}}\right)$. [V. Brdar and A. Y. Smirnov 2019]
- the equality and simultaneous diagonal structures of M_D and M_{BS} may arise as a consequence of $Z_2 \times Z_2$ symmetry.
- mass matrices relations, m_{ν}, m_N and $m_S \rightarrow \left(m_{\nu} = \frac{k_d^2}{k_c^2} m_S \right)$ and $\left(m_N = -k_d^2 \frac{1}{m_{\nu}} \right)$
- physical masses m_i are related to the mass matrix m_{ν} in the flavor basis as $m_{\nu} = U_{\rm PMNS} m_{\nu}^{\rm diag} U_{\rm PMNS}^{T}$.
- It proves convenient to work with positive masses of N_j , $m_{N_j} > 0$, implies that the unitary transformation matrices diagonalizing mass matrices m_{ν} and m_{N} are related as $\left(U_N = i U_{\nu}^* \equiv i U_{PMNS}^* \right)$
- the diagonalization $\overline{m_S}$, $\overline{\widehat{m_S}} = U_S^{\dagger} m_S U_S^{*}$, where $\widehat{m_S} = \text{diag}(m_{S_1}, m_{S_2}, m_{S_3})$, $m_{S_k} > 0, k = 1, 2, 3$, can be performed with the help of the same mixing matrix U_{PMNS} : $\left(U_{S} = U_{\nu} \equiv U_{PMNS} \right)$
- Thus, in the considered scenario the the light neutrino masses m_i, the heavy RH neutrino masses m_{N_i} and the sterile neutrino masses (m_{S_k}) are related as follows:

$$m_{i} = \frac{k_{d}^{2}}{m_{N_{i}}} = \frac{k_{d}^{2}}{k_{R}^{2}} m_{S_{k}}, \quad i, j, k = 1, 2, 3 \text{ for } i \in \mathbb{R}$$

Prativa Pritimita (IIT Bombay, IISc Bangalore)

The diagonalization of $\mathcal{M}_{\text{LRDSM}}$ after changing it from flavor (weak interaction eigenstate) basis to mass basis is done by a generalized unitary transformation as,

$$\begin{split} \Psi_{\beta \text{havor}} &= V \mid \Psi_{\beta \text{mass}} & (7) \\ \begin{pmatrix} \nu_{\alpha L} \\ N_{\beta L}^{c} \\ S_{\gamma L} \end{pmatrix} &= \begin{pmatrix} V_{\alpha i}^{\nu \nu} & V_{\alpha j}^{\nu N} & V_{\alpha k}^{\nu S} \\ V_{\beta i}^{N \nu} & V_{\beta j}^{N N} & V_{\beta k}^{N S} \\ V_{\gamma i}^{S \nu} & V_{\gamma j}^{S N} & V_{\gamma k}^{S S} \end{pmatrix} \begin{pmatrix} \nu_{iL} \\ N_{jL}^{c} \\ S_{kL} \end{pmatrix} . \end{split}$$

- The mixing between the right-handed neutrinos and sterile neutrinos $(N_L^c S_L)$ is given by the term, $V^{NS} \propto M_{RS} M_S^{-1}$
- the mixing between the fields of the left-handed flavor neutrinos and the heavy right-handed neutrinos $(\nu_L N_L^c)$ is: $V^{\nu N} \propto M_D M_R^{-1} = -M_D M_{RS}^T M_S M_{RS}^{-1}$
- The mixing between sterile and light neutrinos (ν_L − S_L) is vanishing, V^{νS}_{αk} ≅ 0 and V^{Sν}_{γi} ≅ 0.

イロト イポト イヨト イヨト

Dominant contributions to the $0\nu\beta\beta$ decay amplitude are given by:

- the standard mechanism due to the exchange of light neutrino ν_i, mediated by left-handed gauge boson W_L, i.e. due to purely left-handed (LH) CC interaction;
- new contributions due to the exchange of heavy neutrinos $N_{1,2,3}$ and sterile neutrinos $S_{1,2,3}$, mediated by right-handed gauge boson W_R , i.e. due to purely right-handed (RH) CC interaction. The contribution due to exchange of virtual $S_{1,2,3}$ is possible due to the mixing between N_L^c and S_L .

Figure: $0\nu\beta\beta$ mediated by (a) light neutrino which is called the standard mechanism, (b) heavy right-handed neutrino N_R and (c) heavy sterile neutrino S_L .

< 1[™] >

• Considering both the **standard mechanism** and the **new contributions** to this decay process in our model, the inverse half life can be written as:

$$\left[T_{1/2}^{0\nu}\right]^{-1} = g_{\rm A}^4 G_{01}^{0\nu} \left[\left|\mathcal{M}_{\nu}^{0\nu} \cdot \eta_{\nu}\right|^2 + \left|\mathcal{M}_{N}^{0\nu} \cdot (\eta_{N} + \eta_{S})\right|^2\right], \tag{9}$$

where $\mathcal{M}_{N}^{0\nu}$ is the Nuclear Matrix Elements (NME) for the heavy neutrino exchange and η_{N} and η_{S} are lepton number violating parameters associated with the exchange of the heavy neutrinos $N_{1,2,3}$ and $S_{1,2,3}$.

 Since the dominant contributions to 0νββ decay arise from more than one contribution, there might be intereference between them in the decay rate of the process.

くぼう くほう くほう

- ν_i with N_j or S_k interference is suppressed (being proportional to electron mass and due to helicity).
- However, the interference between the contributions of the heavy neutrinos *N_j* and *S_k* both involving RH currents, in general, can't be neglected.
- In the case when this interference is not taken into consideration,

$$|m_{\beta\beta,L,R}^{\rm eff}| \equiv m_{ee}^{\nu+N+S} = \left(\left|m_{\beta\beta,L}^{\nu}\right|^2 + \left|m_{\beta\beta,R}^{N}\right|^2 + \left|m_{\beta\beta,R}^{S}\right|^2\right)^{\frac{1}{2}}.$$

Numerical Analysis

- Left-panel: Standard Mechanism
- Middle-panel: New physics without intereference
- Right-panel: New physics with intereference

Figure: Plots showing effective Majorana mass parameter as a function of lightest neutrino mass, m₁ (NO), m₃(I0).

-

Bound on lightest neutrino mass

In the NO case:

- Contribution due to the $S_{1,2,3}$ exchange, $|m_{\beta\beta}^{S}|$, dominates over the light neutrino ν_i and $N_{1,2,3}$ exchange contributions for $10^{-4} \text{ eV} < m_1 \leq 1.5 \times 10^{-3} \text{ eV}.$
- At $m_1 \gtrsim 2 \times 10^{-3}$ eV, for $\alpha = \beta = 0$, the $S_{1,2,3}$ contribution is sub leading.
- For $\alpha = \pi$, $\beta = 0$, however, $|m_{\beta\beta I}^{\nu}|$ is strongly suppressed in the interval $m_1 \cong (1.5 \times 10^{-3} - 9 \times 10^{-3})$ eV and goes through zero at $m_1 \cong 2.26 \times 10^{-3} \text{ eV}.$
- Therefore $|m_{\beta\beta}^{S}|$ gives significant contribution to $m_{ee}^{\nu+|N+S|}$ in the indicated interval and determines the minimal value of $m_{aa}^{\nu+|N+S|}$ at $m_1 \cong 2.26 \times 10^{-3} \text{ eV}.$
- Intereference effects giving sizable contribution to $0\nu\beta\beta$.

In the IO case:

• Contribution due to the $S_{1,2,3}$ exchange $|m_{\beta\beta}^{S}|$ and of the interference term $2\text{Re}(m_{\beta\beta}^N \cdot m_{\beta\beta}^{S^*})$ in the interval of values of m_3 of interest are practically negligible.

- ★ New physics contributions to neutrinoless double beta decay induced by right-handed currents (left-right theories) can saturate the current experimental bound (GERDA, KamLAND-ZEN and EXO).
- ★ Interestingly, left-right theories with double seesaw framework induces large Majorana mass term N_R for right handed neutrinos even if there is no direct Majorana mass term to start with.
- ★ Intereference effects might play an important role in providing crucial information on absolute scale of lightest neutrino mass.

A B > A B >

The LFV processes as like μ → e + γ, μ → 3e decays and μ - e conversion in nuclei can be mediated by heavy RH and sterile neutrinos N_{1,2,3} and S_{1,2,3}.

A B > A B >

イロト イヨト イヨト イヨト

2

・聞き ・ヨキ ・ヨキ

Ratio $\mathcal{M}_{N}^{0\nu}/\mathcal{M}_{\nu}^{0\nu}$

• Using values of NMEs, the minimal and maximal values of the ratio $\mathcal{M}_{N}^{0\nu}/\mathcal{M}_{\nu}^{0\nu}$ for ⁷⁶Ge we get from Table 1:

$$22.2 \lesssim rac{{\cal M}_N^{0
u}}{{\cal M}_
u^{0
u}} \lesssim 76.3\,, {}^{76}{
m Ge}\,.$$
 (10)

They correspond respectively to $\mathcal{M}_{\nu}^{0\nu} = 4.68$ and 5.26.

	⁷⁶ Ge		⁸² Se		¹³⁰ Te		¹³⁶ Xe	
Methods	$\mathcal{M}_{\nu}^{0 u}$	$\mathcal{M}_N^{0\nu}$	$\mathcal{M}_{\nu}^{0\nu}$	$\mathcal{M}_N^{0\nu}$	$\mathcal{M}_{\nu}^{0\nu}$	$\mathcal{M}_N^{0\nu}$	$\mathcal{M}_{\nu}^{0 u}$	$\mathcal{M}_N^{0\nu}$
dQRPA	3.12	187.3	2.86	175.9	2.90	191.4	1.11	66.9
QRPA-Tu	5.16	287.0	4.64	262.0	3.89	264.0	2.18	152.0
QRPA-Jy	5.26	401.3	3.73	287.1	4.00	338.3	2.91	186.3
ISM	2.89	130	2.73	121	2.76	146	2.28	116
$G_{01}^{0\nu} [10^{-14} \mathrm{yrs}^{-1}]$	0.22		1		1.4		1.5	

Table: Values of Nuclear Matrix Elements for various isotopes calculated by different methods for light and heavy neutrino exchange. Here QRPA-Jy uses CD-Bonn short range correlations (SRC) and the rest use Argonne SRC, with minimally quenched $g_A = 1$. The last row shows the phase space factor $G_{01}^{0\nu}$ for various isotopes.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Contribution of the interference term

Accounting for the interference :

$$|m_{\beta\beta,L,R}^{\text{eff}}| \equiv m_{ee}^{\nu+|N+S|} = \left(\left| m_{\beta\beta,L}^{\nu} \right|^{2} + \left| m_{\beta\beta,R}^{N} + m_{\beta\beta,R}^{S} \right|^{2} \right)^{\frac{1}{2}} \\ = \left((m_{ee}^{\nu+N+S})^{2} + 2\text{Re}(m_{\beta\beta,R}^{N} \cdot m_{\beta\beta,R}^{S^{*}}) \right)^{\frac{1}{2}} \\ = m_{ee}^{\nu+N+S} \sqrt{1+R}.$$
(11)

The relative contribution of the interference term of interest is determined by the ratio:

$$R\equiv rac{2{
m Re}(m^{N}_{etaeta,R}\cdot m^{S^{*}}_{etaeta,R})}{|m^{
u}_{etaeta,L}|^{2}+|m^{N}_{etaeta,R}|^{2}+|m^{S}_{etaeta,R}|^{2}}\,.$$

• The contribution of the interference term $2\text{Re}(m_{\beta\beta,R}^N \cdot m_{\beta\beta,R}^{S^*})$ in the $0\nu\beta\beta$ decay rate may be non-negligible only in the interval of values of $m_{1(3)} = (10^{-4} - 10^{-2})$ eV, where the new non-standard contributions are significant.

Prativa Pritimita (IIT Bombay, IISc Bangalore)