

TUM School of Natural Science

Bahaa Ilyas, in collaboration with

Bjorn Garbrecht (TUM), Carlos Tamarit (Mainz), Graham White (Southampton)

International Workshop on Baryon and Lepton Number Violation (BLV 2024)

One More Open Question:

 6.7×10^{-11}

 $8.36 \times 10^{-11} \le Y_B =$

Matter-Anti-Matter Asymmetry

≤

 $n_b - n_{\overline{b}}$ \mathcal{S}_{0}

Among many different scenarios to explain the BAU in the universe we study **Electroweak Baryogenesis,** but why we choose EWBG?

Today's Goals

Compare three methods for calculating CP-violating sources for Electroweak Baryogenesis.

Identify whether the sources induced by fermions mixing can be computed with different methods (spinor decomposition vs VEV-insertion approximation).

Provide **a ready to plug** equation of the CP-violating source to be used by Phenomenologists in their favourite model.

To do that we:

➢Review Methods of CP-violating sources for EWBG.

➢Present Modified dispersion relation are necessary for self-consistent calculations.

➢Apply these onto a the case of mixing of 2 fermionic flavours.

3

Baryon Number violation: Sphaleron process.

C and CP violation: CP-odd phase in the mass matrix.

Departure from Thermodynamic equilibrium: first-order

electroweak phase transition.

4

Scenario:

- Electroweak symmetry breaking.
- Injection of CP violation into the symmetric phase.
- Conversion of left handed fermion number to Baryon number through the sphaleron process

Scenario:

- Electroweak symmetry breaking.
- Injection of CP violation into the symmetric phase.
- Conversion of left handed fermion number to Baryon number through the sphaleron process

Scenario:

- Electroweak symmetry breaking.
- Injection of CP violation into the symmetric phase.
- Conversion of left handed fermion number to Baryon number through the sphaleron process

Scenario:

- Electroweak symmetry breaking.
- Injection of CP violation into the symmetric phase.
- Conversion of left handed fermion number to Baryon number through the sphaleron process

Scenario:

- Electroweak symmetry breaking.
- Injection of CP violation into the symmetric phase.
- Conversion of left handed fermion number to Baryon number through the sphaleron process

Scenario:

- Electroweak symmetry breaking.
- Injection of CP violation into the symmetric phase.
- Conversion of left handed fermion number to Baryon number through the sphaleron process

Scenario:

- Electroweak symmetry breaking.
- Injection of CP violation into the symmetric phase.
- Conversion of left handed fermion number to Baryon number through the sphaleron process

Scenario:

- Electroweak symmetry breaking.
- Injection of CP violation into the symmetric phase.
- Conversion of left handed fermion number to Baryon number through the sphaleron process

Scenario:

- Electroweak symmetry breaking.
- Injection of CP violation into the symmetric phase.
- Conversion of left handed fermion number to Baryon number through the sphaleron process

Scenario:

- Electroweak symmetry breaking.
- Injection of CP violation into the symmetric phase.
- Conversion of left handed fermion number to Baryon number through the sphaleron process

Scenario:

- Electroweak symmetry breaking.
- Injection of CP violation into the symmetric phase.
- Conversion of left handed fermion number to Baryon number through the sphaleron process

 \int_{WS} ~ 120 $\alpha^5 T$

 n_L Y_B

 B/A

 $v = 0$

 j_μ^5

 $\mathscr{G}^\mathbf{p}$

 \mathcal{V}_W

 \mathcal{L}

 $\overline{\Gamma_{\!W\!S}}\ll v$

 $\overline{\chi}$

 \mathcal{S}

- Electroweak symmetry breaking.
- Injection of CP violation into the symmetric phase.
- Conversion of left handed fermion number to Baryon number through the sphaleron process

$\boxed{\varGamma_{\!\scriptscriptstyle WS}\ll v}$ Y_B

Scenario:

- Electroweak symmetry breaking.
- Injection of CP violation into the symmetric phase.
- Conversion of left handed fermion number to Baryon number through the sphaleron process

 Y_B 9.2 × 10⁻¹¹

ш

Part 1 Methods

WKB Method [Joyce, Prokopec, Turok] [Cline, Joyce, Kainulainen, Prokopec]

• Solve Dirac eq. with space-time mass with the WKB approximation

$$
(i\partial - M^{H}(z) - i\gamma^{5}M^{A}(z)) \Psi = 0 \quad \Psi_{s} \equiv e^{-i\omega t} \begin{pmatrix} L_{s} \\ R_{s} \end{pmatrix} \otimes \xi_{s}, \quad \sigma_{3}\xi_{s} \equiv s\xi_{s}, \quad , s = \pm.
$$

\n• Dirac equation fixes k_{s} in terms of ω
\n• Using canonical EOM:
\n
$$
v_{g} = \frac{\partial \omega_{s}}{\partial k_{s}} \begin{bmatrix} \dot{k}_{s} = -\frac{\partial \omega_{s}}{\partial x} \\ \dot{k}_{s} = -\frac{\partial \omega_{s}}{\partial x} \end{bmatrix}
$$
\n• We get
\n
$$
F_{s} = \dot{k}_{s} = \omega_{s} \dot{v}_{g} = -\frac{m_{i} m'_{i}}{\omega_{s}} \pm s \frac{(m_{i}^{2} \theta')'}{2 \omega_{0}^{2}},
$$

Fluid equations in the WKB approximation

 \square Boltzmann equations assumed to be of the form

$$
(\partial_t + \mathbf{v}_g \cdot \partial_{\mathbf{x}} + \mathbf{F} \cdot \partial_{\mathbf{p}}) f_i = C[f_i, f_j, \ldots].
$$

- \Box Particles and antiparticles are treated separately, resulting in different forces that depend on spin: CP violation.
- \Box Taking moments of Boltzmann equations one derives fluid / diffusion equations for the particle asymmetries of different species

Getting the modified dispersion relations is **Simple**, but writing the Boltzmann is not from 1st principles.

The closed time path formalism

Time-dependent observables in QFT can be related to a **path integration** over a **closed timepath**

CTP Propagators

• **Propagators** carry indices a,b= \pm from the time branches of the field insertions

$$
iS_{ab}(x,y) = \langle T_{\mathcal{C}} \psi_a(x) \bar{\psi}_b(y) \rangle \equiv \int \! \frac{d^4k}{(2\pi)^4} \, e^{-\mathrm{i}k(x-y)} i \mathcal{S}_{ab}\left(k, \frac{x+y}{2}\right) \qquad \text{Wigner transfer.}
$$

● Contain **info** about the **shell** and **number densities** of propagating d.o.f.s

$$
iS_{\text{free}}^{+-}(k) \equiv iS_{\text{free}}^{<}(k) = -2\pi\delta(k^2 - m^2)(k + m)\left[\theta(k^0)f(\mathbf{k}) - \theta(-k^0)(1 - \bar{f}(-\mathbf{k})\right]
$$

● They satisfyquantum equations of motion: **Schwinger-Dyson**eqs.in contour *C*

$$
\left[{\rm i}\partial\!\!\!/-M^{\rm H}-{\rm i}\gamma^5M^{\rm A}\right]{\rm i}S^{ab}(x,y)=\!a\delta_{ab}{\rm i}\delta^4(x-y)+\sum_c c\int d^4z \mathfrak{L}^{ac}(x,z){\rm i}S^{cb}(z,y)\right]
$$

This leads to **Boltzmann / fluid equations fromfirstprinciples**!

Self-energy (1PI)

and for in the collision-less limit:

$$
\left(\rlap{\hspace{0.02cm}/}{k}+\frac{i}{2}\rlap{\hspace{0.02cm}/}{\partial}-M^{\textrm{H}}(z)e^{-i\phi}-i\gamma^{5}M^{\textrm{A}}(z)e^{-i\phi}\right)S^{<}(k;z)=0,
$$

After Wigner transf. $\diamond = \frac{1}{2} \, \partial_k^{S_2} \partial_X^{S_1} - \frac{1}{2} \, \partial_k^{S_1} \partial_X^{S_2} + \frac{1}{2} \, \partial_X^{M_1} (\partial_k^{S_1} + \partial_k^{S_2}) - \frac{1}{2} \, \partial_X^{M_2} (\partial_k^{S_1} - \partial_k^{S_2}).$

CTP: VEV insertion approximation

• Consider **Schwinger-Dyson** equation without a IPI self-energy and $m = m_0 + \delta m(x)$

$$
(i\partial - m_0 - \delta m(x)) iS^{ab}(x, y) = a\delta_{ab} i\delta^{(4)}(x - y)
$$

• Start with **solutions** iS_0^{ab} to the **homogeneous** case m=m₀

$$
(i\partial \hspace{-0.05cm}/ - m_0) iS_0^{ab}(x, y) = a\delta_{ab}i\delta^{(4)}(x - y)
$$

• The first equation is solved then by a **geometric series**

$$
S^{ab}(x,y) = S_0^{ab}(x,y) + \int d^4 z \, c \, S_0^{ac}(x,z) \, \delta M(z) \, S_0^{cb}(z,y) + \int d^4 z \, d^4 w \, c \, d \, S_0^{ac}(x,z) \, \delta M(z) \, S_0^{cd}(z,w) \, \delta M(w) \, S_0^{db}(w,y) + \cdots
$$

CTP: VEV insertion approximation

• δ **m(x)** effects can be absorbed into a "self-energy-like" contribution in eq. for Sab

$$
(i\partial \!\!\!/ - m_0 + \delta m(x)) iS^{ab}(x, y) = a\delta_{ab} i\delta^{(4)}(x - y)
$$

$$
(i\partial \!\!\!/ - m)S^{ab}(x, y) = a\delta^{ab}\delta^4(x - y) + \int d^4 z \, c \frac{\delta \Sigma_0^{ac}(x, z)}{\delta \Sigma_0^{ac}(x, z)} S^{cb}(z, y),
$$

$$
\frac{\delta \Sigma_0^{ab}(x,y)}{\delta \Sigma_0^{ab}(x,y)} = a\delta^{ab}\delta M\delta(x-y) + \delta M(x)S_0^{ab}(x,y)\delta M(y) + \int d^4z\,d\delta M(x)S_0^{ad}(x,z)\delta M(z)\,S_0^{db}(z,y)\,\delta M(y) + \dots
$$

Schwinger Dyson equations can be solved in terms of **powers of S0,δM**

 $S_0 \, \propto \, \delta(k^0 - m_0^2)$ SO the full mass shell cannot be directly recovered

CTP: Spin decomposition

- For a **planar wall** in x,y directions, **S^z is conserved**
- Can **expand** propagatorsin **structures that commutewithS^z**

$$
iS_{s}^{<}=-\frac{1}{2}\left(1+sS^{z}\right)\left[s\gamma^{3}\gamma^{5}g_{0}^{s-}-s\gamma^{3}g_{3}^{s-}+1g_{1}^{s-}-i\gamma^{5}g_{2}^{s-}\right]
$$

- \cdot Schwinger-Dyson equations solved in terms of functions g_i
- \bullet Combining eqs. **algebraic constraints** that determine **modifiedmass shell**s

$$
(k^{2} - m_{\text{eff}}^{2}(x))g_{i}^{<}(x, k) = 0 \Rightarrow g_{i}^{<}(x, k) \propto \delta(k^{2} - m_{\text{eff}}^{2}(x))
$$

$$
\left(\left(k + \frac{i}{2} \partial \hspace{-0.05cm} \right) - M^{\mathrm{H}}(z) e^{-i\phi} - i \gamma^5 M^{\mathrm{A}}(z) e^{-i\phi} \right) S^{\lt}(k; z) = 0
$$

$$
\begin{aligned} &2\mathrm{i}\hat{k}^{0}g_{0}^{s}-2\mathrm{i}s\hat{k}^{z}g_{3}^{s}-2\mathrm{i}M^{\mathrm{H}}\mathrm{e}^{-\frac{\mathrm{i}}{2}\overleftarrow{\partial}\cdot\overrightarrow{\partial}_{k}}g_{1}^{s}-2\mathrm{i}M^{\mathrm{A}}\mathrm{e}^{-\frac{\mathrm{i}}{2}\overleftarrow{\partial}\cdot\overrightarrow{\partial}_{k}}g_{2}^{s}=0\,,\\ &2\mathrm{i}\hat{k}^{0}g_{1}^{s}-2s\hat{k}^{z}g_{2}^{s}-2\mathrm{i}M^{\mathrm{H}}\mathrm{e}^{-\frac{\mathrm{i}}{2}\overleftarrow{\partial}\cdot\overrightarrow{\partial}_{k}}g_{0}^{s}+2M^{\mathrm{A}}\mathrm{e}^{-\frac{\mathrm{i}}{2}\overleftarrow{\partial}\cdot\overrightarrow{\partial}_{k}}g_{3}^{s}=0\,,\\ &2\mathrm{i}\hat{k}^{0}g_{2}^{s}+2s\hat{k}^{z}g_{1}^{s}-2M^{\mathrm{H}}\mathrm{e}^{-\frac{\mathrm{i}}{2}\overleftarrow{\partial}\cdot\overrightarrow{\partial}_{k}}g_{3}^{s}-2\mathrm{i}M^{\mathrm{A}}\mathrm{e}^{-\frac{\mathrm{i}}{2}\overleftarrow{\partial}\cdot\overrightarrow{\partial}_{k}}g_{0}^{s}=0\,,\\ &2\mathrm{i}\hat{k}^{0}g_{3}^{s}-2\mathrm{i}s\hat{k}^{z}g_{0}^{s}+2M^{\mathrm{H}}\mathrm{e}^{-\frac{\mathrm{i}}{2}\overleftarrow{\partial}\cdot\overrightarrow{\partial}_{k}}g_{2}^{s}-2M^{\mathrm{A}}\mathrm{e}^{-\frac{\mathrm{i}}{2}\overleftarrow{\partial}\cdot\overrightarrow{\partial}_{k}}g_{1}^{s}=0\,. \end{aligned}
$$

[Kainulainen, Prokopec, Schmidt, Weinstock, Konstandin]

After expanding to second order in mass gradients, finally can write the master kinetic equation:

$$
k^{z} \frac{\partial}{\partial z} g_{\rm L}^{s} + \underbrace{\frac{1}{2} \left[MM^{\dagger}, g_{\rm L}^{s} \right]}_{\text{mixing term}}
$$
\n
$$
- \frac{1}{4} \left\{ \left(MM^{\dagger} \right)^{\prime}, \partial_{k^{z}} g_{\rm L}^{s} \right\} - \underbrace{\frac{1}{4k^{z}} \left(M^{\prime} g_{\rm R}^{s} M^{\dagger} + M g_{\rm R}^{s} M^{\dagger} \right) + \frac{1}{4k^{z}} \left(M^{\prime} M^{\dagger} g_{\rm L}^{s} + g_{\rm L}^{s} M M^{\dagger} \right)}_{\text{classical force}}
$$
\n
$$
+ \underbrace{\frac{1}{8} \left(M^{\prime\prime} M^{\dagger} \partial_{k^{3}} g_{\rm L}^{s} - \partial_{k^{z}} \frac{g_{\rm L}^{s}}{k^{z}} M M^{\prime\dagger} \right) - \frac{i}{8} \left(M^{\prime\prime} \partial_{k^{z}} g_{\rm R}^{s} M^{\dagger} - M \partial_{k^{3}} \frac{g_{\rm R}^{s}}{k^{z}} M^{\prime\dagger} \right)}_{\text{semiclassical force}}
$$
\n
$$
- \underbrace{\frac{1}{16} \left[\left(MM^{\dagger} \right)^{\prime}, \partial_{k^{z}}^{2} g_{\rm L}^{s} \right] + \frac{i}{8k^{z}} \left[M^{\prime} M^{\prime \dagger}, \partial_{k^{z}} g_{\rm L}^{s} \right] - 0}_{\text{Z}j_{\rm R}^{s} (k, z) = \left(M^{H} M^{H^{\prime}} + M^{A} M^{A^{\prime}} \right) \frac{1}{k^{z}} \partial_{k^{z}} j_{\rm R}^{s} (k, z) + \left(M^{H} (\partial_{z}^{2} M^{A}) - M^{A} (\partial_{z}^{2} M_{H}) \right) \frac{1}{2k^{z}} \partial_{k^{z}} \left(\frac{j_{N}^{3}(k, z)}{k^{z}} \right)}_{\text{m}^{2}(z) = m^{2}(z) - \frac{s}{k^{0}} (M^{\prime\prime}(z) \partial_{z} M^{A}(z) - M^{A}(z) \partial_{z} M^{\prime\prime}(z))}, \quad \tilde{k}^{
$$

$$
\mathcal{S}_\text{sc}(\mathbf{k}) = -\,\frac{\beta}{2} v_w f_0(\omega_0) (1-f_0) \left[\delta F + \frac{F_0}{\omega_0} \delta \omega + F_0 \, \beta (1-f_0) \delta \omega + \frac{F_0 \, \omega_0}{\omega_0^2 - \mathbf{k}_\|^2} \delta \omega \right]
$$

Part 2 Different Sources in Literature

Motivation: CP-violation in the fluid equations

Considering fermions

• The vector Current:

• The axial current:

$$
\partial_z j^z = v_w \, \partial_z n - D \, \partial_z^2 n = \mathcal{S}^{\text{collision}}
$$

[Musolf, Chung, Tulin,…., Konstandin, Prokopec, …etc]

 $\partial_z j_5^z = v_w \, \partial_z n - D \, \partial_z^2 n = -\mathcal{S}^{\text{flow}} + \mathcal{S}^{\text{collision}}$ [Carena, Seco..., Kainulainen, Konstandin, Prokopec, Schmidt, Weinstock] Our focus today

Liouville/Schwinger Dyson equations (microscopic kinetic equations)

Boltzmann-like kinetic equation for distribution functions

Fluid equations for number densities/ bulk flows containing Particle densities Generated through the CP violating source.

The

Asymmetry

Part 3 What we found!

We do the same thing but now for two fermion flavours:

● Weconsider a **2 fermion system** with **CP-odd phases** present in **mixing terms**

$$
M = \begin{bmatrix} m_1 & e^{i\varphi} v_b(z) \\ v_a(z) e^{i\gamma} & m_2 \end{bmatrix}
$$

$$
C \supset - \bar{\psi} (M^{\mathrm{H}}(x) + i\gamma^5 M^{\mathrm{A}}(x)) \psi
$$

$$
\begin{cases} M^{\mathrm{H}} = \frac{1}{2} (M + M^{\dagger}) \\ M^{\mathrm{A}} = \frac{1}{2} (M - M^{\dagger}) \end{cases}
$$

- Have computed **CPV** source $\partial_{\mu} j_{5}^{\mu}$ with two different methods:
	- **spin decomposition**
	- **VIAexpansion**

Agreement up to \mathcal{O} (v³, ∂_2^3)

2 fermion mixing: CPV source

Ready to plug equations for model builders and phenomenologists

The source

For a simple Bino-Higgsino system The source is:

$$
M_{ij} = \begin{pmatrix} M_1 & e^{i\varphi} v_b(z) \\ e^{i\gamma} v_a(z) & |\mu| \end{pmatrix}
$$

$$
\mathcal{S}_{11}^{\rm RM}(\mathbf{k},x) = -\beta v_w f_{11}^0 \left(1 - f_{11}^0\right) \frac{M_1|\mu| \left(2v_a' v_b' + v_b v_a'' + v_a v_b''\right) \sin(\phi)}{\left(M_1^2 - |\mu|^2\right) \tilde{\omega}_{0,1} \,\omega_{0,1}}
$$

$$
\mathcal{S}_{22}^{\rm RM}(\mathbf{k},x) = +\beta v_w f_{22}^0 \left(1 - f_{22}^0\right) \frac{M_1|\mu| \left(2v_a' v_b' + v_b v_a'' + v_a v_b''\right) \sin(\phi)}{\left(M_1^2 - |\mu|^2\right) \tilde{\omega}_{0,2} \,\omega_{0,2}}
$$

Conclusions

We have obtained a new consistency condition for the derivation of Boltzmann equations: all terms proportional to δ' must cancel

For quantum fermions, this requires **modifieddispersion relations**

Mass shell can be inferred from **constrain equations nontrivial check**

Computing the modified **dispersion relation essential** in CTPas in WKB, and **cannot be done with theVIA approach**

We have derived **CPV sources** in a system of 2 **mixing fermions** in the CTPformalism

VIA and **spin decomposition** calculations agree, consistency condition satisfied

Resonance not present when **summing** over **flavours**

Sources contributing to **flavour sum** have the structure of **WKBsemiclassical force**

Thank you

A consistency check

- In the quantum case, the **mass** of **on-shell excitations** can be **computed** with **constrain eqs.**
- **Cancellation of δ'** in the **kineticequations** is then a **nontrivial consistency check**
	- **Unambiguous Boltzmann equations including CPV sources in the CTP formalism require** to compute the **modifieddispersion relation**, similar to the **WKB**case

Trivialshell: classical particle

● Consider a **classical point particle**with **space-timedependent mass**.E.o.m.sare

$$
k^{\mu} = m(x) \frac{dx^{\nu}}{d\tau} \Rightarrow \frac{dk^{\nu}}{d\tau} = \frac{\partial m(x)}{\partial x_{\nu}}
$$

• With $g(x,k) = \delta(k^2-m^2(x))f(x,\mathbf{k})$ the classical phase-space density, Liouville's **theorem**gives

$$
\frac{d}{d\tau}g(x,k) = \delta(k^2 - m^2(x))\left(\frac{k^{\mu}}{m}\frac{\partial f(\mathbf{k},x)}{\partial x^{\mu}} + \frac{dk^{\mu}}{d\tau}\frac{\partial f(\mathbf{k},x)}{\partial k^{\mu}}\right)
$$

+2k_{\mu}f(\mathbf{k},x)\delta'(k^2 - m^2(x))\left(\frac{dk^{\mu}}{d\tau} - \frac{\partial m}{\partial x_{\mu}}\right)

Nontrivial shell: single fermion

● Consider a **quantum fermion** with

 $\mathcal{L} \supset -\bar{\psi}(M^{\rm H}(x) + i\gamma^5 M^{\rm A}(x))\psi$

● The **spin decompositionmethod** gives a **CPV source** in static bubble frame:

 $\left[\partial_z j_5^z(k,z)\right] = \left(M^H M^{H'} + M^A M^{A'}\right) \frac{1}{k^z} \partial_{k^z} j_5^z(k,z) + \left(M^H (\partial_z^2 M^A) - M^A (\partial_z^2 M_H)\right) \frac{1}{2k^z} \partial_{k^z} \left(\frac{j_5^3(k,z)}{k^z}\right)$ as well as a **modifiedshell**

$$
m_s^2(z) = m^2(z) - \frac{s}{\tilde{k}^0} \left(M^H(z)\partial_z M^A(z) - M^A(z)\partial_z M^H(z)\right), \quad \tilde{k}^0 \equiv \text{sign}(k^0)\sqrt{(k^0)^2 - (k^1)^2 - (k^2)^2}
$$

[Kainulainen, Prokopec, Schmidt, Weinstock]

● **Our input**: **Modified shell** precisely leads to **cancellationof δ' terms** !

2 fermion mixing: Consistency check

The **consistency check** requires to compute the **modified dispersion relation**

$$
k^{2} = (m_{i} + \delta m_{i})^{2}
$$

\n
$$
\delta m_{1}^{s} = -\frac{sm_{2} \sin(\gamma + \phi) (v_{b}v_{a}^{\prime} + v_{a}v_{b}^{\prime})}{2 (m_{1}^{2} - m_{2}^{2}) \sqrt{k_{z}^{2} + m_{1}^{2}}}
$$
 + (s-independent) + $\mathcal{O}(v^{3}, vv'', v'v')$,
\n
$$
\delta m_{2}^{s} = -\frac{sm_{1} \sin(\gamma + \phi) (v_{b}v_{a}^{\prime} + v_{a}v_{b}^{\prime})}{2 (m_{2}^{2} - m_{1}^{2}) \sqrt{k_{z}^{2} + m_{2}^{2}}}
$$
 + (s-independent) + $\mathcal{O}(v^{3}, vv'', v'v')$,

This results lead to the cancellation of δ' terms!!

Consistent Boltzmann eq.

Termsthat give nonzero total source lead to force terms in Boltzmanneqs. \propto m_i $\partial_z(\delta m_i)$ exactly as in the WKB formalism

Using off-diagonal components:

Exchanging $L \leftrightarrow R$, $M \leftrightarrow M^{\dagger}$, we can write the sought-for divergence of the chiral current

$$
\partial_z j_5^z = -\sum_{s=\pm 1} s(\partial_z g_R^s + \partial_z g_L^s)
$$

But the main objective is to write the divergence of the chiral current along the diagonal $\partial_z j_{5,ii}^z$, in terms of the diagonal number currents.

So to do so, we need to solve for $(g_{R/L, i\hat{j}}^s, i \neq j)$ up to the same order, so we make the following expansion:

$$
g_{R/L,ij}^s = g_{R/L,ij}^{s,(0)} + g_{R/L,ij}^{s,(1)} + g_{R/L,ij}^{s,(2)} + \mathcal{O}(\delta m^{\prime 3}, \delta m^{\prime\prime} \delta m^{\prime}, \delta m^{\prime\prime\prime}),
$$

$$
\begin{split} g_{R,12}^{s,(0)}&=\frac{\left(m_2\delta m_a^{\dagger}+\delta m_b m_1\right)\left(g_{R,11}^s-g_{R,22}^s\right)}{m_1^2-m_2^2}+\mathcal{O}(\delta m^2),\\ g_{R,21}^{s,(0)}&=\frac{\left(m_1\delta m_b^{\dagger}+\delta m_a m_2\right)\left(g_{R,11}^s-g_{R,22}^s\right)}{m_1^2-m_2^2}+\mathcal{O}(\delta m^2),\\ g_{L,12}^{s,(0)}&=\frac{\left(m_1\delta m_a^{\dagger}+\delta m_b m_2\right)\left(g_{L,11}^s-g_{L,22}^s\right)}{m_1^2-m_2^2}+\mathcal{O}(\delta m^2),\\ g_{L,21}^{s,(0)}&=\frac{\left(m_2\delta m_b^{\dagger}+\delta m_a m_1\right)\left(g_{L,11}^s-g_{L,22}^s\right)}{m_1^2-m_2^2}+\mathcal{O}(\delta m^2). \end{split}
$$

The resonant mixing source:

$$
(\partial_z j_5^z)_{11} = \sum_{s=\pm} \left[-\frac{2s (v_a v_a' - v_b v_b')}{m_1^2 - m_2^2} (g_{3,11}^s - g_{3,22}^s) -\frac{2s \sin(\gamma + \varphi) m_1 m_2}{k^z (m_1^2 - m_2^2)} (2v_a' v_b' + v_b v_a'' + v_a v_b'') \left[\frac{1}{2(k^z)^2} (g_{3,11}^s - k^z \partial_{k^z} g_{3,11}^s) -\frac{1}{m_1^2 - m_2^2} (g_{3,22}^s - g_{3,11}^s) \right] + \mathcal{O}(\delta m^3, \delta m \delta m''', \delta m'' \delta m'),
$$

$$
(\partial_{z}j_{5}^{z})_{22} = \sum_{s=\pm} \left[\frac{2s(v_{a}v'_{a} - v_{b}v'_{b})}{m_{1}^{2} - m_{2}^{2}} (g_{3,11}^{s} - g_{3,22}^{s}) + \frac{2s\sin(\gamma + \varphi)m_{1}m_{2}}{k^{z}(m_{1}^{2} - m_{2}^{2})} (2v'_{a}v'_{b} + v_{b}v''_{a} + v_{a}v''_{b}) \left[\frac{1}{2(k^{z})^{2}} (g_{3,22}^{s} - k^{z}\partial_{k^{z}}g_{3,22}^{s}) - \frac{1}{m_{1}^{2} - m_{2}^{2}} (g_{3,22}^{s} - g_{3,11}^{s}) \right] + \mathcal{O}(\delta m^{3}, \delta m \delta m''', \delta m'' \delta m')
$$

\n
$$
(\partial_{z}j_{5}^{z})_{1,1} = \frac{i(v_{a}v'_{a} - v_{b}v'_{b})}{m_{1}^{2} - m_{2}^{2}} (\text{Tr}[\gamma^{3}S_{0}^{<}]_{1,1} - \text{Tr}[\gamma^{3}S_{0}^{<}]_{2,2}) - \frac{i\sin\varphi m_{1}m_{2}}{k_{z}(m_{1}^{2} - m_{2}^{2})} (2v'_{a}v'_{b} + v_{b}v''_{a} + v_{a}v''_{b}) \left[\frac{1}{2k_{z}^{2}} (\text{Tr}[\gamma^{3}S_{0}^{<}]_{1,1} - k_{z}\partial_{k_{z}} \text{Tr}[\gamma^{3}S_{0}^{<}]_{1,1}) - \frac{1}{m_{1}^{2} - m_{2}^{2}} (\text{Tr}[\gamma^{3}S_{0}^{<}]_{2,2} - \text{Tr}[\gamma^{3}S_{0}^{<}]_{1,1}) \right],
$$

\n
$$
(\partial_{z}j_{5}^{z})_{2,2} = -\frac{i(v_{a}v'_{a} - v_{b}v'_{b})}{m_{1}^{2} - m_{2}^{2}} (\text{Tr}[\gamma^{3}S_{0}^{<}]_{1,1} - \text{Tr}[\gamma^{3}S_{0}^{<}]_{2,2}) + \frac{i\sin\varphi m_{1}m_{2}}{k_{z}(m_{1}^{2} - m_{2}^{2
$$

31

Writing an appropriate ansatz from the constraint equations:

From the constraints equations to the second order in mass gradients, we can write

$$
g_{0,ii}^s = \sum_j c_{ij}^s(k, x) \,\delta(k^2 - m_j^2 - 2m_j \delta m_j^s).
$$

$$
g_{3,ii}^{s,(0)} = \frac{k^z s \tilde{k}_0}{k^z^2 + m_i^2} g_{0,ii} = 2\pi \frac{k^z s}{\tilde{k}_0} \delta(k^2 - m_j^2 - 2m_j \delta m_j^s) c_{ii}^s(k, x)
$$

where, $c_{12}^s = O(v^2)c_{22}^s$, $c_{21}^s = O(v^2)c_{11}^s$, and

$$
\delta m_1^s = -\frac{sm_2 \sin(\gamma + \phi) (v_b v_a' + v_a v_b')}{2 (m_1^2 - m_2^2) \sqrt{k_z^2 + m_1^2}} + (s\text{-independent}),
$$

$$
\delta m_2^s = -\frac{sm_1 \sin(\gamma + \phi) (v_b v_a' + v_a v_b')}{2 (m_2^2 - m_1^2) \sqrt{k_z^2 + m_2^2}} + (s\text{-independent}).
$$

The coefficients c_{ij}^s (k, x) contain appropriate number distribution functions.

[Back-up SM Sakharov](#page-3-0)

[Back-up SM Sakharov](#page-3-0)

Back up – [Effective action](#page-21-0)

The 2PI effective action can be expressed as

$$
\Gamma[\Delta, S] = B + i \, \text{tr}[\Delta^{(0)^{-1}} \Delta] - i \, \text{tr}[S^{(0)^{-1}} S] + i \, \text{tr} \log \Delta^{-1} - i \, \text{tr} \log S^{-1} + \Gamma_2[\Delta, S] \,,
$$

where B is the classical action, $\Delta^{(0)^{-1}}$ the Klein-Gordon, $S^{(0)^{-1}}$ the Dirac operator, $\Gamma_2[\Delta, S] \equiv -i \times$ the sum of 2PI vacuum graphs,

[Backup :](#page-21-0)[Toward kinetic theory: Wigner transformation](#page-52-0)

Wanted: Equations for classical distributions (eventually fluids) that encompass relevant quantum effects.

relative coordinate $r \equiv x - y$ average coordinate $X \equiv 1/2(x + y)$

Wigner transformation of the two-point functions:

$$
G(k, X) = \int d^4 r \,\mathrm{e}^{\mathrm{i} k \cdot r} G\left(X + \frac{r}{2}, X - \frac{r}{2}\right)
$$

Convolutions lead to the gradient expansion:

$$
\int d^4r \,\mathrm{e}^{\mathrm{i}k\cdot r} \int d^4z G\left(X + \frac{r}{2}, z\right) F\left(z, X - \frac{r}{2}\right) = \mathrm{e}^{-\mathrm{i}\diamond} \left\{G(k, X)\right\} \left\{F(k, X)\right\}
$$
\n
$$
A \diamond B = \frac{1}{2} \left(\partial_X^A \partial_k^B - \partial_X^B \partial_k^A\right) (AB).
$$

The collisionless Schwinger-Dyson equations in Wigner space adopt the form:

$$
\left(\not k + \frac{i}{2}\not\!{\partial} - M^{\rm H}(z)e^{-i\phi} - i\gamma^5 M^{\rm A}(z)e^{-i\phi}\right)S^<(k;z) = 0,
$$

52

Backup - [Wigner Transform](#page-51-0)

• For an operator associated with a generalized "matrix" representation $O(x, y)$, where x and y are spacetime coordinates, the Wigner transform is defined as the Fourier transform with respect to the relative coordinate $r \equiv x - y$. Defining the average coordinate $X \equiv 1/2(x + y)$, the Wigner transform $O(k; X)$ of $O(x, y)$ is obtained as

$$
O(k;X) = \int d^4r \, e^{ikr} O\left(X + \frac{r}{2}, X - \frac{r}{2}\right)
$$

The corresponding inverse transform is

$$
O\left(X + \frac{r}{2}, X - \frac{r}{2}\right) = \int \frac{d^4k}{(2\pi)^4} e^{-ikr} O(k; X).
$$

The Wigner transform of a product of operators

$$
C(x,y) = \int d^4z A(x,z)B(z,y)
$$

is known to be of the form arXiv:hep-ph/9802312.

$$
C(k; X) \equiv A(k; X) e^{-i\phi} B(k; X),
$$

$$
A \diamond B = \frac{1}{2} (\partial_X^A \partial_k^B - \partial_X^B \partial_k^A)(AB).
$$

Back up spin diagonal

 $g_0^+ + g_0^- = -\frac{1}{2} \sum_i \text{tr} \left[s \gamma^3 \gamma^5 i S_s^{<,>} \right]$, charge density, $g_3^+ + g_3^- = -\frac{1}{2} \sum \text{tr} \left[s \gamma^3 \text{i} S_s^{<,>} \right]$, axial charge density, $g_1^+ + g_1^- = -\frac{1}{2} \sum_{s=+}$ tr [iS^{<,>}], scalar density, $g_2^+ + g_2^- = -\frac{1}{2}\sum \text{tr} [i\gamma^5 iS_s^{<,>}]$, pseudoscalar density, $g_0^+ - g_0^- = -\frac{1}{2} \sum_i \text{tr} \left[\gamma^3 \gamma^5 i S_s^{<,>} \right]$, axial current density, $g_3^+ - g_3^- = -\frac{1}{2} \sum_{s=1} \text{tr} \left[\gamma^3 i S_s^{<,>} \right]$, current density, $g_1^+ - g_1^- = -\frac{1}{2} \sum_{s=1}^{n} tr [si S_s^{<,>}]$, spin density, $g_2^+ - g_2^- = -\frac{1}{2} \sum \text{tr} \left[\sin^5 i S_s^{<,>}\right]$, axial spin density.