

arXiv review ETP Weekly Meeting

Moritz Molch | April 29, 2024

www.kit.edu

Belle II measurement of the branching fraction of $B^- \rightarrow D^0 \rho^+$

- Belle II analyses rely on reconstructing both B mesons in Υ(4S) → BB̄ decays using one as signal and the other as tag meson
- Significant difference in tagging efficiency of $B^- \rightarrow D^0 \rho (770)^-$ decays between data and simulation
- Reconstruction:
 - Reconstruction of D^0 by combining K^- and π^+ in D^0 mass window
 - Reconstruction of ρ^- by combining π^0 and π^- in ρ^- mass window
 - Combination of D^0 and ρ^- to B^- via a kinematic fit
- Observables:
 - $\Delta E = E_B^* E_{beam}^*$ in e^+e^- center-of-mass frame
 - $\cos \theta_p$ with θ_p being the angle between $\vec{p}(\pi^-)$ and $\vec{p}(B^-)$ in the ρ^- rest frame

3/7 April 29, 2024 Moritz Molch: arXiv review

Belle II measurement of the branching fraction of $B^- \rightarrow D^0 \rho^-$

- Backgrounds:
 - BB: B decays other than the signal decay
 - Self-cross-feed: misreconstruction by taking a final-state particle from other *B* meson
- Disentanglement of non-resonant $B^- \to D^0 \pi^- \pi^0$ and $B^- \to D^0 \rho^- (\to \pi^- \pi^0)$: Template fit on background-subtracted $\cos \theta_\rho$ distribution
- Result:

 $\mathcal{B}(B^- \to D^0 \rho^-) = (0.939 \pm 0.021(\text{stat}) \pm 0.050(\text{syst})) \%$

Current world average:

 $\mathcal{B}(B^- \to D^0 \rho^-) = (1.34 \pm 0.18) \%$

 Relative precision of world average improved by factor of 2

- Comprehensible review of history of machine learning approaches to flavour tagging of jets at ATLAS and CMS
- Developments for both, single- and multi-pronged jet tagging, are described:
 - Single-pronged jet tagging: Does a jet originate from a b, c, light flavour quark or a gluon?
 - Multi-pronged jet tagging: Does a (large-radius) jet originate from a resonance, a W/Z/H boson, a top quark, ...?
- Approaches are divided into three generations:
 - Run-1 and early Run-2: boosted decision trees and shallow neural networks
 - During Run-2: deep neural networks, convolutional neural networks, recurrent neural networks
 - After Run-2 and Run-3: deep sets, graph neural networks, transformers
- Outlook: Trend of using lower-level input features is likely to continue
 - Requires even more advanced architectures, poses significant challenges to computing and storage infrastructure
 - Is the neural network learning patterns in the simulation, which are not present in data?

ATLAS search for non-resonant $H(bb)H(\tau\tau)$ production

- Update on arXiv:2209.10910v2 [hep-ex]
- Targets gluon-gluon fusion (ggF) as well as vector boson fusion (VBF) production channels

ATLAS search for non-resonant $H(bb)H(\tau\tau)$ production

- Boosted decision trees used for categorization as well as for signal-background separation
- Observed (expected) limit on the Higgs pair production signal strength modifier:

 $\mu_{\rm HH} = \frac{\sigma_{\rm HH}}{\sigma_{\rm HH}^{\rm SM}} < 5.9(3.3) \quad {\rm CMS}: 3.3(5.2)$

at 95 % confidence level (CL)

- Excess in SLT region: 2.7σ with respect to background-only 2.3σ with respect to SM hypothesis
- Dominant uncertainty source: size of the recorded dataset

Backup

Feynman diagrams for SM Higgs pair production

