
Introduction to Continuous-X services at NHR@KIT

Holger Obermaier, Michele Mesiti | 4. July 2024

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

1. Motivation

2. Continuous-X at NHR@KIT

3. GitLab: Examples and Exercises

2/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

Table of Contents

What is the X in Continuous-X (CX)
Continuous Integration
Continuous Testing
Continuous Benchmarking
Continuous Deployment

3/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

Motivation

Have you ever worked with software that was hard (or even impossible) to change or improve?

What was the reason?

4/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

Question

Shortening the feedback loop between design and use of software (this includes development) increases
the speed at which useful software can be produced.

This has been made relevant by the ability to deliver software multiple times a day (e.g., via Internet)
compared to a couple of times a year (e.g., by physically shipping CDs or Floppy Disks). This typically
gives a competitive advantage to businesses that adopt proper Cx practices 1.

Here “continuous” means: in cycles that are much shorter (typically - less than one day) than they used
to be. Cycles are made shorter thanks to automation.

1Forsgren, Humble, Kim - Accelerate

5/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

Why continuous X?

Git Flow
Introduced in 20102, prescribes using these branches:

main to release the code
release-*, for release candidates (starting from develop)
develop, the “main” branch for development
feature branches - one per feature, merge to develop with --no-ff
hotfix-* (starting from main)

This complexity might be necessary in some cases (e.g. to maintain multiple versions at the same time)
but it is typically overkill for many projects.
The main problem is when feature branches live for long time.
The longer they live, the harder the merge.

bOriginal post by Vincent Driessen

6/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

Workflows in Software Development

https://nvie.com/posts/a-successful-git-branching-model/

GitHub Flow
A simpler branching model:

Use the main branch to release the code
Create a branch for any change
open a pull/merge request, make changes and discuss them (code review)

Trunk-Based Development
(Almost) No branches!

develop (almost) only on main
use pair programming instead of code reviews
strong automatic tests are needed
This is a key enable of continuous integration as a development practice

7/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

Workflows in Software Development

gatekeeping/enforcing coding standard on contributions from others
parts of the development cycle that do not fit on the machine you use to develop code.

Typically...
Build and publish your work on the web (including documentation)
Run all unit and integration tests, and static analysis tools
Measure test coverage
Check code style and practices (Linting, auto-formatting)
Test compilation with different compilers and libraries (e.g., MPIs, CUDA/ROCm, …)
Test and benchmark on specific hardware ⇐
Automated building/packaging for various compilers, MPI versions, architectures, …
... all using standardized environments in conjunction with containers

8/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

Why automate?

Testing is one of the most important tasks that can be (at least partially) automated.

Having a test suite that runs quickly is important (even if you launch it asynchronously).

Test Coverage can be used to estimate how much code is tested (gives only an upper bound - remember
Goodhart’s Law)

Having a test suite that runs quickly and has meaningful coverage is a problem that requires careful
software design.

9/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

A few words on Automated Testing

https://en.wikipedia.org/wiki/Goodhart%27s_law

1. Motivation

2. Continuous-X at NHR@KIT
Introduction
Runner Setup
CI levels in detail

3. GitLab: Examples and Exercises

10/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

Continuous-X Service at NHR@KIT

GitLab CI/CD pipelines files are composed by jobs.
The execution of the jobs is managed by an application called gitlab-runner.
A GitLab server can be connected with gitlab-runner by registering a runner (there can be more
than one runner per gitlab-runner application).
The GitLab server (the coordinator) requests then runner to execute single jobs, providing all the
necessary code and data and collecting the results.

11/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

GitLab runner, pipelines and jobs

https://docs.gitlab.com/runner/

SCC manages an installation of GitLab for KIT-affiliated and also externals (https://gitlab.kit.edu).
For more information (e.g. access,), see the documentation (English / Deutsch)

Where runners live?
It is possible to request runners to be configured on gitlab.kit.edu (see how to request one).

In what follows, we assume you need to configure one yourself, because, for example:
you want to do Continuous Benchmarking
you want to test your code in the environment provided on a HPC cluster.

12/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

GitLab@KIT

https://gitlab.kit.edu
https://docs.gitlab.kit.edu/en/
https://docs.gitlab.kit.edu/de/
https://docs.gitlab.kit.edu/en/gitlab_runner/

Level Number
jobs/day Runner on

Self-
managed
Runner

Permanent
Runner

Full Hard-
ware
Access
(e.g.
GPUs)

Container
support

Jobs with
timing
con-
straints

1 Low Compute
Node

2 Medium Dedicated Lo-
gin Node

medium
workloads

3 High Dedicated
Hardware

See: NHR@KIT User Documentation: Continuous Integration: Overview

13/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

Continuous-X Service Levels at NHR@KIT

https://www.nhr.kit.edu/userdocs/ci/

The gitlab-runner application is used to:
create a runner from the web interface, which assigns a token to the runner;
register runnners for a GitLab instance or repository, with the register subcommand, passing the
token you got from the web interface Multiple runner can be registered, for multiple GitLab servers
and repositories, on the same machine, but each runner needs its own token.
launch all the registered runner for the user: this is done with the run subcommand. This command
will eventually run the pipeline.

The capability of each registered runner depends on:
The executor used by the runner (e.g., shell, docker, custom)
The host the runner lives on (e.g. a login node or a compute node), i.e., on which host the
gitlab-runner run command was called, or the CI level

14/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

GitLab: Setting up a Runner

Example Repository

15/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

GitLab: Settings: CI/CD: Runner

https://gitlab.com/michele.mesiti/cx-course

Login to dedicated CI node

ssh hk-ci-controller.scc.kit.edu

(bq0742@hk-ci-controller.scc.kit.edu) Your OTP: <OTP>
(bq0742@hk-ci-controller.scc.kit.edu) Password: <Password>
...
Last login: Mon Oct 25 16:15:10 2021 from 2a00:1398:4:1801::810d:3bc6
�[�]�[bq0742@hkn1993]�[Mon. 2021-11-08 15:07:19]
�[~] $

16/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

Register a GitLab Runner on the HoreKa Cluster

Register and configure GitLab Runner

gitlab-runner register

Enter the GitLab instance URL: e.g. https://gitlab.com/
Enter the registration token: <Token from GitLab: Settings: CI/CD: Runners>
Enter a description for the runner: e.g. GitLab Runner at NHR@KIT
Enter an executor: shell

Configuration is written to ${HOME}/.gitlab-runner/config.toml
Execute GitLab Runner

gitlab-runner run

17/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

Register a GitLab Runner on the HoreKa Cluster
(continued)

Executors types supported by the GitLab Runner:
Shell (simplest)
Custom (allows customization to our system, e.g. using containers and/or Slurm)
SSH
Docker
VirtualBox
…

18/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

Register a GitLab Runner on the HoreKa Cluster
(continued)

Using Containers
NHR@KIT User Documentation: Using Containers
Custom executor instead of shell executor
No native Docker support (security constraints)
Enroot: Root-less execution of Docker images
Template folder: /usr/share/gitlab-runner/custom-executor-enroot
Template GitLab Runner config: config.toml
GitLab Runner config uses prepared scripts: config.sh, prepare.sh, run.sh, cleanup.sh
.gitlab-ci.yml uses keyword image to configure Docker image

19/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

Register a GitLab Runner on the HoreKa Cluster
(Containers on Slurm)

https://www.nhr.kit.edu/userdocs/ci/containers/
https://github.com/NVIDIA/enroot

20/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

GitLab Settings: CI/CD: Runners

CI Level 1
GitLab Runner is executed by a batch job
GitLab Server is contacted by the runner, the batch job starts
Requires access from compute node to GitLab Server
GitLab Runner quits when all waiting CI jobs are executed
Problem: Start of the GitLab Runner job is unknown in advance
For repeating GitLab Runner jobs use scrontab (consider also scheduled pipelines)
⇒ Best suited for nightly builds and nightly integration tests

21/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

CI Level 1 at NHR@KIT

https://docs.gitlab.com/ee/ci/pipelines/schedules.html

Prerequisite: Register a GitLab Runner on HoreKa Cluster
In CI Level 1 the GitLab Runner is executed as a batch job

sbatch \
--wrap="gitlab-runner run" \
--time="00:30:00" \
--partition="dev_cpuonly"

22/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

CI Level 1 at NHR@KIT (continued)

Alternative method: Create a batch script for submission:

#!/usr/bin/bash
#SBATCH --partition dev_cpuonly
#SBATCH --time 00:30:00

Prepare your environment
module add compiler/intel mpi/impi numlib/mkl
module list

Start GitLab Runner
gitlab-runner run

23/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

CI Level 1 at NHR@KIT (continued)

Use scrontab -e to set up regular GitLab Runner jobs:

#SCRON -p dev_accelerated
#SCRON -t 00:30:00
@midnight gitlab-runner run

Jobs are not guaranteed to execute at the preferred time!
Jobs are regularly queued in the batch system:

squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
1503545 dev_accel gitlab-r bq0742 PD 0:00 1 (BeginTime)

You can make the slurm job trigger a pipeline.

24/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

CI Level 1 at NHR@KIT (continued)

https://slurm.schedmd.com/scrontab.html
https://docs.gitlab.com/ee/ci/triggers/#trigger-a-pipeline

Prerequisite: Register a GitLab Runner on HoreKa Cluster
In CI Level 2 the GitLab Runner

is executed as systemd user service (you need lingering enabled - contact us!)
runs on dedicated login node (e.g. hk-ci-controller.scc.kit.edu)

Limited / shared resources ⇒ Runtime variations
Only suited for medium workloads
No access to special hardware

is self-managed
Systemd management
CI jobs can start immediately

25/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

CI Level 2 at NHR@KIT

Start GitLab Runner Service

systemctl --user start gitlab-runner.service

Get status of GitLab Runner Service

systemctl --user status gitlab-runner.service

� gitlab-runner.service - GitLab Runner for bq0742
Loaded: loaded (/etc/systemd/user/gitlab-runner.service; disabled; vendor

preset: enabled)↪→

Active: active (running) since Tue 2021-11-09 11:45:41 CET; 3s ago
Main PID: 1167130 (gitlab-runner)
CGroup:

/user.slice/user-8946.slice/user@8946.service/gitlab-runner.service↪→

��1167130

26/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

CI Level 2 at NHR@KIT (continued)

Read log output of GitLab Runner Service

journalctl --user --unit gitlab-runner.service

WARNING: Running in user-mode.
WARNING: Use sudo for system-mode:
WARNING: $ sudo gitlab-runner...

Configuration loaded builds=0
listen_address not defined, metrics & debug endpoints disabled builds=0
[session_server].listen_address not defined, session endpoints disabled

builds=0↪→

27/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

CI Level 2 at NHR@KIT (continued)

Stop GitLab Runner Service

systemctl --user stop gitlab-runner.service

28/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

CI Level 2 at NHR@KIT (continued)

A Custom Executor has been developed for HoreKa and bwUniCluster 2.0 that can reside on the login
node (as for CI level 2) and launch jobs on the compute nodes via Slurm, while using Enroot or Singularity
(now Apptainer) for containers.

This helps to have the same performance reliability as CI level 1 but without having to manually start the
gitlab-runner, among other things.

Installation/Registration steps:
1 Clone this repository to HoreKa/bwUniCluster 2.0/Future Technologies Partition
2 To register a new runner, execute the script in the repository

utils/gitlab-runner-register-wrapper.sh and follow the instructions (launch it before with
the --help option to see what is available)

3 for more information, refer to the README

29/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

CI Level 2 at NHR@KIT: A special executor

https://gitlab.kit.edu/kit/scs-public/gitlab-ci-custom-executor-slurm-enroot_apptainer
https://gitlab.kit.edu/kit/scs-public/gitlab-ci-custom-executor-slurm-enroot_apptainer

Dedicated hardware
For projects that

generate many CI jobs per day
need predictable runtimes and performance
require privileged access to special resources

Available hardware: see e.g. the documentation for the Future Technologies Partition, and for
HoreKa
Get in contact with CI Operations Team

30/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

CI Level 3 at NHR@KIT

https://www.nhr.kit.edu/userdocs/ftp/hardware/
https://www.nhr.kit.edu/userdocs/horeka/hardware/

Options:
Wrap gitlab-runner run in a time-limited slurm job (CI level 1)
Schedule a pipeline - either manual launch or with scrontab, possibly in conjunction with Scheduled
Pipelines, or trigger a pipeline from inside the slurm job (CI level 1)
Run permanently on the login node, using a shell executor (CI level 2)
Run permanently on the login node, using a custom executor that submits jobs automatically to a
compute node (CI level 2)

31/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

Register a GitLab Runner on the HoreKa Cluster:
recap

https://docs.gitlab.com/ee/ci/pipelines/schedules.html
https://docs.gitlab.com/ee/ci/pipelines/schedules.html
https://docs.gitlab.com/ee/ci/triggers/#trigger-a-pipeline

1. Motivation

2. Continuous-X at NHR@KIT
Introduction
Runner Setup
CI levels in detail

3. GitLab: Examples and Exercises

32/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

GitLab: Examples and Exercises

GitLab CI/CD Documentation:
Get started with GitLab CI/CD
Keyword reference for the .gitlab-ci.yml file
GitLab CI templates

YAML-config file gitlab-ci.yml
GitLab offers integrated CI-editor with visualization and linting

33/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

GitLab: the CI/CD interface

https://docs.gitlab.com/ee/ci/quick_start/
https://docs.gitlab.com/ee/ci/yaml/
https://gitlab.com/gitlab-org/gitlab-foss/tree/master/lib/gitlab/ci/templates

Each push triggers a new pipeline (unless skipped)
Each pipeline consist of stages

Predefined stages: .pre, build, test, deploy, .post
Stages run in sequence
Working tree is typically cleaned up between stages: Use artifacts to keep files

Each stage consist of jobs
Jobs in the same stage can run in parallel

If a job fails then the stage fails, and all subsequent stages are skipped
If a stage fails then the pipeline fails

34/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

GitLab: the CI/CD interface (continued)

https://docs.gitlab.com/ee/ci/pipelines/#skip-a-pipeline

Repository with examples and exercises
Tip: when trying the exercises, disable email notifications regarding pipeline events (click on the bell
icon in the main page of the repository and select “Disabled”)
For more examples: the official GitLab CI/CD template collection

Disclaimer
The selection of features listed here is based on my personal experience. It is only a selection: to have a
broader view of what is available, look at the templates and at the official documentation.

35/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

Exercises and Examples

https://gitlab.com/michele.mesiti/cx-course
https://gitlab.com/gitlab-org/gitlab-foss/tree/master/lib/gitlab/ci/templates

A single-stage pipeline that compiles and run a C program.
1 “Fork” repository on a GitLab server
2 Configure runner for the cloned repository
3 Briefly consider the security aspects (what code is the runner going to run? Where? When?)
4 Trigger the pipeline on the main branch

36/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

Exercise: A Basic Pipeline

A failing pipeline gives an important message about the status of our code, so it is important that when
there is a failure in the code we run (e.g., test cases or benchmarks)

1 Run the pipeline on the failure-01 branch. It fails: why? Is it expected?
2 Run the pipeline on the fail-failed-01 branch. It does not fail: why? Is this expected?
3 Run the pipeline on the fails-correctly-again branch. It fails: why? Is it expected? What was

changed?
How much code you write in your .gitlab-ci.yml and how much code should you write in bash scripts?

37/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

Exercise: Failures

To customize the behaviour of the test code, GitLab offers a few ways to set environment variables with
different degrees of secrecy.
Checkout the environment-variables branch and follow the instruction in README.md.

38/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

Exercise: Environment Variables

Artifacts are the main way to transfer information between jobs in a pipeline, and from the runner to the
GitLab web interface.

1 Checkout the artifacts branch
2 have a look at the .gitlab-ci.yml file
3 Try to run the pipeline. Does the behaviour depend on the executor type (e.g., docker vs shell)?

39/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

Example: Artifacts

Don’t Repeat Yourself: reuse code in pipeline definition
1 Checkout branch templates
2 have a look at the .gitlab-ci.yml file, notice the use of .greet-base and of the extends: key
3 How can the base job be customized?

See also: yaml anchors

40/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

Example: Pipeline code reuse with templates and
extends

https://docs.gitlab.com/ee/ci/yaml/yaml_optimization.html#anchors

1 Checkout branch include
2 have a look at the .gitlab-ci.yml file, and the use of include:
3 How can you include multiple files? How is the content merged?

41/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

Example: Managing complexity with include:

It is possible to periodically mirror the content of a repository to and from another one.
Push mirror: the mirror is updated when a push to the repo is made (docs)
Pull mirror: the mirror is updated periodically (polling) (docs)

Note: Setting up a pull mirror on GitLab requires GitLab Premium (at the time of writing, this is
available on gitlab.kit.edu)

42/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

GitLab CI/CD: Exercise: Mirroring

https://docs.gitlab.com/ee/user/project/repository/mirror/push.html
https://docs.gitlab.com/ee/user/project/repository/mirror/pull.html

Depending on the GitLab tier available, it might be impossible to set up a pull mirror. As a workaround, it
is possible to use GitHub actions to push.

1 Create an empty repository on GitHub and push the example repo there (tip: disable notifications)
2 Create and empty repository on a GitLab server (tip: disable notifications)
3 Checkout the github-to-gitlab-mirror branch in the example repo
4 Follow the instructions in the README.md to set up the mirroring

43/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

GitLab CI/CD: Exercise: Mirroring from GitHub to
GitLab

The basic features of CI can be replicated without GitLab or GitHub, but just setting up a bare repository
and the relevant hooks.

1 Checkout branch hooks
2 Follow instructions in README.md

44/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

Basic Git: Exercise: Git Hooks

GitLab can show the results of a test suite in a more convenient way.

Coverage reports produced as static websites can also be uploaded on GitLab pages.

If the GitLab pages feature is not active, one can use third party services to host the coverage reports.

Example on gitlab.com
Exercise: fix the tests and reach 100% code coverage.

45/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

GitLab CI/CD: Test results and coverage

https://gitlab.com/michele.mesiti/testing-python/-/pipelines/882228639/test_report
https://testing-python-michele-mesiti-41e88bc4a5e5702e6730e61fb164ce68c.gitlab.io/
https://app.codecov.io/gl/michele.mesiti/testing-python/tree/main/
https://gitlab.com/michele.mesiti/testing-python

Create a job that launches the program hostname on 2 different nodes, using:
1 The shell executor (suggestion: either use srun, or prepare a shell script to launch with salloc).
2 The custom executor (suggestion: use srun hostname in the job body, set the

COMMAND_OPTIONS_SBATCH variable appropriately).

46/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

HPC: a MPI job in a pipeline

NVidia provides a container image for its HPC benchmarks.

The exercise: run the HPL benchmark on a GPU node on HoreKa.

It requires registering an account at ngc.nvidia.com, setting up authentication for Enroot, and registering
a runner for the repository of the exercise.

The exercise is described/sketched here.

47/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

HPC: Run the NVidia HPL benchmark as part of a CI
pipeline

https://catalog.ngc.nvidia.com/orgs/nvidia/containers/hpc-benchmarks
https://gitlab.kit.edu/michele.mesiti/hpl-ci-test

It is possible to use job rules to limit the execution of some jobs to some events, e.g.:
when a tag is pushed, to create a release on a registry/data repository (and optionally obtain a DOI
to use when citing the software/dataset)
when a merge request is processed, or when a scheduled run happens
only on specific branches
only when some files change

48/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

Conditionally running a job in a pipeline

https://docs.gitlab.com/ee/ci/jobs/job_rules.html
https://docs.gitlab.com/ee/ci/yaml/index.html#ruleschanges

A set of reference pictures (a substitute for the live demonstration)

49/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

Screenshot Gallery

50/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

GitLab: the CI/CD interface (Set up CI/CD)

51/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

GitLab: the CI/CD interface (CI/CD Editor)

52/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

GitLab: the CI/CD interface (Browse Templates)

53/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

GitLab: the CI/CD interface (CI/CD Templates)

stages:
- build
- test

build-hello-world-job:
stage: build
script: cc helloWorld.c -o helloWorld
artifacts:

paths:
- helloWorld
expire_in: 1 day

test-code-job1:
stage: test
script: if [[$(helloWorld) != "Hello World"]]; then exit 1; fi

54/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

GitLab: the CI/CD interface (.gitlab-ci.yml)

Test stage can use compute resources
...

test-code-job2:
stage: test
script:
- srun -p dev_cpuonly -t 20 -N 1 -n 76 CPU_Test.sh
- srun -p dev_accelerated -t 20 -N 1 -n 76 --gres=gpu:4 GPU_Test.sh

55/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

GitLab: the CI/CD interface (.gitlab-ci.yml)

56/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

GitLab: the CI/CD interface (Edit)

57/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

GitLab: the CI/CD interface (Visualize)

58/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

GitLab: the CI/CD interface (Lint)

59/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

GitLab: the CI/CD interface (CI/CD: Pipelines)

60/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

GitLab: the CI/CD interface (Pipeline passed)

61/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

GitLab: the CI/CD interface (Build Job)

62/62 2024-07-04 H. Obermaier, M. Mesiti: CX services at NHR@KIT Scientific Computing Center (SCC)

GitLab: the CI/CD interface (Test Job)

	GitLab: Examples and Exercises
	Screenshot Gallery

