

Probing top-quark electroweak couplings at the FCC-ee Simon Keilbach, Jan Kieseler, Markus Klute, Matteo Presilla, Xunwu Zuo | 13.05.2024

KIT - University of the State of Baden-Württemberg and National Laboratory of the Helmholtz Association

www.kit.edu

FCC-ee

- Precision frontier lepton collider
- $\emptyset \approx 91 \, \mathrm{km}$
- W,Z, Higgs and $t\overline{t}$ factory
- Offers unprecedented sensitivities to BSM physics, SM couplings and rare decays
- Infrastructure foreseen to be reused to house hadron collider (FCC-hh) after end of run

(M. Selvaggi at FCC WS)

$t\overline{t}$ EW couplings at FCC-ee

- Direct measurement of $tt\gamma$ and ttZ
 - modification of SM couplings via new physics feasible
 - predict potential sensitivity to couplings at $\sqrt{s}=365\,{\rm GeV}$
- Access couplings by studying energy and angular information of leptons:

$$x_l = \frac{2E_l}{m_t} \sqrt{\frac{1-\beta}{1+\beta}}, \quad \beta \equiv \sqrt{1-4m_t^2/s}$$

- Sufficient initial state polarisation deemed crucial for accessing γ/Z couplings at e^-e^+ colliders (arXiv:hep-ph/0004223v4)
 - \Rightarrow Substantial final state polarisation suffices to disentangle the couplings (arXiv:1503.01325v3)

Anomalous couplings

• Cross section $\frac{d^2\sigma}{dx_l d\cos\theta_l} \propto S(x, \cos\theta)$ can be linearised for supposedly small anomalous form factors δ_i :

$$S(x, \cos \theta) = S^0(x, \cos \theta) + \sum_{i=1}^8 \delta_i f_i(x, \cos \theta), \, \delta_i \ll 1$$

Anomalous couplings

• Sensitivity to anomalous top couplings arises from shape difference for SM and BSM scenarios \Rightarrow vary coupling parameters by 5%

Coupling	Modification	Modification enforced by gauge invariance
ta_ttA	+0.424237	$+2, \pm +70.140487$
	-0.424237	+0.140487
tv_ttA	+0.010606	$+ x + 7 - \frac{-0.003512}{-0.003512}$
	-0.010606	+0.003512
vr_ttZ	+0.17638	_
	-0.17638	

Analysis

• Event generation with WHIZARD+PYTHIA

- only one parameter allowed to differ from its SM value at a time
- Use DELPHES IDEA detector simulation for particle reconstruction
- Analyse semileptonic and full hadronic ntuples seperately (+ rescaling)
- Event selection + optimisation
- Template χ^2 fit

Event selection

- Cut1 (lepton isolation cut): $\Delta R > 0.4$ to all jets or $\frac{E_l}{E_{\text{iet}}} > 0.5$
- Cut2(sanity cut):
 n_{leptons} > 0
- Further restrictions on observables:
 - Missing energy *E*
 - $p_{\text{leading lepton}}$
 - Impact parameter d_0 (plus significance $d_0/\sigma(d_0)$)

Event selection optimisation

Vary (upper/lower) cut limits calculating efficiency and purity each time
 → compare optimum of ε and π for respective cuts and choose best one

Event selection optimisation

Optimised event selection

- **()** $\Delta R > 0.4$ to all jets or $E_l/E_{jet} > 0.5$ for all reconstructed leptons (Isolation criteria)
- $(3) \not E > 23 \, \mathrm{GeV}$
- $④ p_{\text{lead}} > 13 \,\text{GeV}$
- (a) $d_0 < 0.05 \,\mathrm{mm}$, $d_0/\sigma(d_0) < 50$ and $p > 13 \,\mathrm{GeV}$ for all prompt lepton candidates

Event selection: results

10/17

Template χ^2 fit

$$\mathcal{P}(n_i|\mu_i) = \frac{\mu_i^{n_i}}{n_i!} e^{-\mu_i}, \quad \mu_i = \sum_{j=1}^{n_{\text{source}}} \mathcal{L}_{\text{int}} \sigma_j \epsilon_{ij} = n_{\text{SM},i} + \delta \cdot (n_{\text{mod},i} - n_{\text{SM},i})$$

• Likelihood function with fit (scaling) parameter δ :

$$\mathcal{L}(D,\mu(\delta)) = \prod_{i=1}^{N} \mathcal{P}(n_i|\mu_i(\delta)) = \prod_{i=1}^{N} \frac{\mu_i^{n_i}}{n_i!} e^{-\mu_i}$$

• Minimise $-\ln(\mathcal{L})$ to determine $\delta = \hat{\delta} \pm \sigma_{\delta}$
• $\chi^2 = \sum_{i=1}^{N} \frac{(n_i - (n_{\text{SM},i} + \delta \cdot (n_{\text{mod},i} - n_{\text{SM},i}))^2}{n_i}$
• $\chi^2 = \sum_{i=1}^{N} \frac{(n_i - (n_{\text{SM},i} + \delta \cdot (n_{\text{mod},i} - n_{\text{SM},i}))^2}{n_i}$
• χ

Results

- Verify that shape difference is genuine and not statistical noise
- Choose appropriate binning:
 - reject outliers with x>1, i.e. enforce $p_{
 m lepton} < 120\,{
 m GeV}$
 - non-uniform binning accounting for areas with less and more statistics
 - $min(n_i) = 20$ to justify applying the central limit theorem

Probing top-quark electroweak couplings at the FCC-ee - Simon Keilbach, Jan Kieseler, Markus Klute, Matteo Presilla, Xunwu Zuo 13.05.2024

Template χ^2 fit results

• Fit results using n_{SM} as experimental data n_i :

Probing top-quark electroweak couplings at the FCC-ee - Simon Keilbach, Jan Kieseler, Markus Klute, Matteo Presilla, Xunwu Zuo 13.05.2024 13/17

Precision on anomalous couplings

• Expected precision on anomalous couplings for 2.5 ab^{-1} of l^{-1} at $\sqrt{s} = 365 \text{ GeV}$ assuming contributions from tv/ta_ttZ to be negligible:

Coupling	Modification	Modification enforced by gauge invariance	Precision
ta_ttA	+0.424237	$\mathtt{ta_ttZ} = rac{-0.140487}{+0.140487}$	$+1.46 \times 10^{-2}$
	-0.424237		-1.40×10^{-2}
tv_ttA	+0.010606	$tv_ttZ = rac{-0.003512}{+0.003512}$	$+4.20 \times 10^{-4}$
	-0.010606		$-3.92 imes 10^{-4}$
vr_ttZ	+0.17638		$+3.86 imes10^{-3}$
	-0.17638	_	-2.89×10^{-3}

Conversion scheme

- A direct comparison with (arXiv:1503.01325v3) cannot be performed in general
 - correlation between vl_ttZ and vr_ttZ unknown
 - tv/ta_ttA not independent in WHIZARD but fixed to tv/ta_ttZ by gauge invariance
 - Janot uses different constraints on form factors, e.g. CP-violating form factor F_{2A}^{γ} vanishes

Conclusion

 \bullet Comparison only possible for F_{2V}^{γ} and only if one of the two <code>WHIZARD</code> parameters is assumed to be predominant

	WHIZARD framework	framework of (arXiv:1503.01325v3)
F_{2V}^{γ}	-8.40×10^{-4}	$\pm 8.1 \times 10^{-4}$
r^{γ}	$+7.85 \times 10^{-4} +2.91 \times 10^{-2}$	
Γ_{2A}	$-2.81 imes10^{-2}$	_

- Event selection optimisation procedure highly beneficial tool to boost signal event rate for constraints on set of observables
- Findings agree with Janot on order of magnitude of the precision
 - $\Rightarrow\,$ precision sufficient to measure top EW couplings with unprecedented accuracy

Outlook

- Account for different parametrisation scheme to compare more than one parameter
 - interpret WHIZARD parameters in terms of SMEFT directly
- Top polarisation also transferred to b quarks ⇒ analogous analysis of (x, cos θ) of b-jets possible
- Include dileptonic channel to enhance amount of leptons available to study
- ML approach to improve final sensitivities imaginable

Thank you for your time Any questions?

Probing top-quark electroweak couplings at the FCC-ee - Simon Keilbach, Jan Kieseler, Markus Klute, Matteo Presilla, Xunwu Zuo 13.05.2024

Jet Algorithm

- $\hfill \hfill \hfill$
 - $\Rightarrow\,$ proper choice of jet algo crucial
- Exclusive k_{\perp} jet algo with R = 0.4 used preliminarily:

•
$$d_{ij} = \min(E_{\perp,i}^2, E_{\perp,j}^2) \frac{\Delta R_{ij}^2}{R^2}, \ \Delta_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

• $d_i = E_{\perp,i}^2$

- collinear emission and infrared safe \Rightarrow amply used at hadron colliders
- Full jet performance study (including jet algos tailored to lepton colliders like *valencia*) pending

Efficiency and purity uncertainties

- Common method of calculating uncertainty of cut efficiency $\epsilon \equiv k/n$ is flawed (arXiv:physics/0701199v1)
 - both poissonian and binomial treatment of errors leads to incorrect predictions
 - e.g.: $\sigma^2(\epsilon) = \epsilon^2 \left(\frac{1}{k} + \frac{1}{n}\right)$ gives unreasonable result for k = 0 and $n \ge 1$

• Correct treatment with Bayesian ansatz:

$$P(\epsilon; k, n) = \frac{P(k; \epsilon, n) P(\epsilon; n)}{N}, \quad P(\epsilon; n) \begin{cases} 1 & \text{if } 0 \le \epsilon \le 1\\ 0 & \text{otherwise} \end{cases}$$

• For a $P(k; \epsilon, n)$ binomially distributed:

$$\Rightarrow \ \sigma(\mathbf{k}) = \sqrt{rac{(k+1)(k+2)}{(n+2)(n+3)} - rac{(k+1)^2}{(n+2)^2}}$$

Cut-flow efficiency and purity

	semileptonic		full hadronic	
	$\epsilon [\%]$	π [%]	$\epsilon [\%]$	π [%]
$n_{\text{leptons}} > 0$	97.486 ± 0.017	69.212 ± 0.027	42.029 ± 0.053	30.789 ± 0.004
$\not\!$	95.686 ± 0.022	92.602 ± 0.026	7.409 ± 0.028	7.398 ± 0.002
$p_{ m lead} > 13{ m GeV}$	94.035 ± 0.026	97.139 ± 0.018	2.684 ± 0.017	2.861 ± 0.001
PV selection	47.083 ± 0.055	98.886 ± 0.017	0.514 ± 0.008	1.114 ± 0.001

Probing top-quark electroweak couplings at the FCC-ee - Simon Keilbach, Jan Kieseler, Markus Klute, Matteo Presilla, Xunwu Zuo 13.05.2024

IDEA

(doi:10.22323/1.414.0337)

Probing top-quark electroweak couplings at the FCC-ee - Simon Keilbach, Jan Kieseler, Markus Klute, Matteo Presilla, Xunwu Zuo 13.05.2024

Reduced energy for $l \in \{e^-, \mu^-\}$ and modified ta_ttAdown coupling

Probing top-quark electroweak couplings at the FCC-ee - Simon Keilbach, Jan Kieseler, Markus Klute, Matteo Presilla, Xunwu Zuo 13.05.2024

Probing top-quark electroweak couplings at the FCC-ee - Simon Keilbach, Jan Kieseler, Markus Klute, Matteo Presilla, Xunwu Zuo 13.05.2024

Reduced energy for $l \in \{e^-, \mu^-\}$ and modified tv_ttAdown coupling

