The Higgs Boson A Dissection Tool for New Physics

Outline

Introduction

	Fundamental Physics						
Symmetries	Particle Content	Fundamental Forces	Higgs Sector				

BSM Higgs Physics - Extended Higgs Sectors

Singlet Extensions

The 2-Higgs-Doublet Model (2HDM)

Measuring Electroweak Symmetry Breaking

Electroweak Baryogenesis

Introduction

The Standard Model is Structurally Complete

The Standard Model is Structurally Complete

The Standard Model is Structurally Complete

The Standard Model is Structurally Complete - But

Open Questions

Particle physics

origin of electroweak symmetry breaking
hierarchy problem
nature of the Higgs boson
fermion mass and flavor puzzle
origin of neutrino masses

Cosmology

nature of Dark Matter
matter-antimatter asymmetry
dark energy
inflation
how to incorporate gravity

Decipherment of fundamental laws of nature: judicious combination of theoretical methods/interpretation and experimental input/scrutiny

New physics is required, but there is no clear indication at which energy scale

The Challenge

The Challenge

Role of the Higgs Boson

Discovery of the Higgs boson at LHC on 4 July 2012
 Is it the Higgs boson?

Establishing the Higgs Mechanism

Establishing the Higgs Mechanism

Role of the Higgs Boson

+ We have the SM-like Higgs boson What can we learn from Higgs physics?

- anomalous Higgs gauge couplings - CP violation

Sew Physics & DM Baryogenesis

- coupling relations **q**_X~**m**_X⁽²⁾
- Establish Higgs mechanism

- Higgs mass
- Higgs self-interaction
- vacuum structure
- CP violation
- portal to hidden sector
- Self-consistency SM
- ➡ Ultimate test Higgs mechanism
- ➡ Vacuum stability
- New Physics&DM
- Matter asymmetry
- © Cosmological evolution

- anomalous Higgs fermion couplings - CP violation
- ➡ Flavor/Matter puzzle
- ▷ New Physics
- ➡ Baryogenesis

Role of the Higgs Boson

+ We have the SM-like Higgs boson What can we learn from Higgs physics?

BSM Higgs Physics - Extended Higgs Sectors

M.M. Mühlleitner, KIT

CRC YS Meeting, 25-27/9/2024, KIT

Vast New Physics Landscape

Extended Higgs Sectors

Why extended Higgs sectors?

- * many new physics models require extended Higgs models supersymmetry!
- * fermion/gauge sectors not minimal why should the Higgs sector be minimal?
- * extended Higgs sectors: alleviate metastability, DM candidate, additional sources of CP-violation ← baryogenesis

How systemize approach not to miss any new physics sign?

- * effective theory (rather model-independent, new physics effects at high energy scales)
- * specific well-motivated UV-complete models

SM Effective Theory (SMEFT)

SMEFT approach:

[Burgess,Schnitzer;Leung eal;Buchmüller,Wyler;Grzadkowski eal; Hagiwara,Ishihara,Szalapski;Zeppenfeld;Giudice eal]

- * SM field content and SM gauge symmetries, no New Physics at E < Λ
- * SM deviations: higher-dimensional operators built from SM fields
- * Operators = low-energy remnants of heavy new physics integrated out at Λ =>
- * Operators suppressed by scale Λ

SM Effective Theory (SMEFT)

SMEFT approach:

[Burgess,Schnitzer;Leung eal;Buchmüller,Wyler;Grzadkowski eal; Hagiwara,Ishihara,Szalapski;Zeppenfeld;Giudice eal]

- * SM field content and SM gauge symmetries, no New Physics at E < Λ
- * SM deviations: higher-dimensional operators built from SM fields
- * Operators = low-energy remnants of heavy new physics integrated out at Λ =>
- * Operators suppressed by scale Λ
- New interactions of SM particles: Higgs part of a doublet field (EWSB linearly realized) ~>
 leading new physics (NP) effects described by D=6 operators

$$\mathcal{L}_{\mathsf{eff}} = \mathcal{L}_{\mathsf{SM}} + \sum_i rac{C_i^{(6)}O_i^{(6)}}{\Lambda^2} + \mathcal{O}(\Lambda^{-4})$$

Electroweak Chiral Lagrangian (EWChL)

SMEFT approach:

[Burgess,Schnitzer;Leung eal;Buchmüller,Wyler;Grzadkowski eal; Hagiwara,Ishihara,Szalapski;Zeppenfeld;Giudice eal]

* EWSB linearly realized: Higgs boson part of a weak doublet¹

* Additional expansion in $g_*v/\Lambda \ll 1$ (g_* typical coupling of the NP sector)

- EW Chiral Lagrangian (EWChL):
- * EWSB non-linearly realized: Higgs treated as singlet

* Chiral expansion

[Contino eal; Azatov eal; Alonso eal; Brivio eal; Elias-Miró eal; Buchada eal]

cf. e.g. [Contino,1005.4269]

¹ Widely discussed benchmark model is composite Higgs: bound state from strongly interacting sector, Higgs emerges as pseudo Nambu-Goldstone boson of an enlarged global symmetry For a composite 2HDM, cf.
[deCurtis eal,'18; deCurtis,delleRose,Egle,Moretti,MM,Sakurai,'23]

Global SMEFT Fit

- SMEFT analysis:
- * Model and basis independence: All relevant operators need to be included
- * Number of non-redundant dim-6 operators for 3 generations: 2499, 59 for 1 generation

[Grzadkowski eal; Alonso eal]

X ³		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(arphi^\daggerarphi)\Box(arphi^\daggerarphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
Q_W	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi \right)^{\star} \left(\varphi^{\dagger} D_{\mu} \varphi \right)$	Q_{darphi}	$(arphi^\dagger arphi) (ar q_p d_r arphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q^{(1)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{l}_{p}\gamma^{\mu}l_{r})$
$Q_{\varphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q^{(3)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{arphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}^{I}_{\mu \nu} B^{\mu \nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{B}R)$	
Qu	$\frac{(\bar{l}_{2}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})}{(\bar{l}_{s}\gamma^{\mu}l_{t})}$	Qee	$(\bar{e}_n \gamma_\mu e_r)(\bar{e}_{\circ} \gamma^{\mu} e_t)$	Q _{le}	$(\bar{l}_n\gamma_{\mu}l_r)(\bar{e}_s\gamma^{\mu}e_t)$	
$Q_{aa}^{(1)}$	$(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)$	Quu	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$\frac{(\bar{l}_p\gamma_\mu l_r)(\bar{d}_s\gamma^\mu d_t)}{(\bar{l}_p\gamma_\mu l_r)(\bar{d}_s\gamma^\mu d_t)}$	
$Q_{la}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$	
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$	
-1		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \right $	
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar{q}_p\gamma_\mu q_r)(ar{d}_s\gamma^\mu d_t)$	
				$Q_{qd}^{(8)}$	$(ar{q}_p \gamma_\mu T^A q_r) (ar{d}_s \gamma^\mu T^A d_t)$	
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-violating			
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{lphaeta\gamma} \varepsilon_{jk} \left[(d^{lpha}_p)^T C u^{eta}_r \right] \left[(q^{\gamma j}_s)^T C l^k_t \right]$			
$Q_{quad}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(q_p^{lpha j})^T C q_r^{eta k} ight]\left[(u_s^{\gamma})^T C e_t ight]$			
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$\varepsilon^{lphaeta\gamma} \varepsilon_{jn} \varepsilon_{km} \left[(q_p^{lpha j})^T C q_r^{eta k} \right] \left[(q_s^{\gamma m})^T C l_t^n ight]$			
$Q_{lequ}^{(1)}$	$(\bar{l}_{p}^{j}e_{r})arepsilon_{jk}(\bar{q}_{s}^{k}u_{t})$	Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^TCu_r^eta ight]\left[(u_s^\gamma)^TCe_t ight]$			
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$					

Global SMEFT Fit

- SMEFT analysis:
- * Model and basis independence: All relevant operators need to be included
- * Number of non-redundant dim-6 operators for 3 generations: 2499, 59 for 1 generation

[Grzadkowski eal;Alonso eal]

- * Global fit: complicated parameter space w/ many degenerate/flat directions and local minima ~>
- Practical approach reduce number of operators by:
- * Symmetry assumptions, e.g. flavor, CP conservation
- * focus on subsectors: Higgs, electroweak, top, Higgs-electroweak, top-Higgs, ...:
 - o include only operators relevant to the considered particle(s)/processes
 - \diamond assume other operators well constrained from different processes
 - ◇ note: not always justified!

Example EFT Operators Contributing to Higgs Pair Production

$$\mathcal{O}_H = \frac{1}{2} (\partial_\mu (\phi^{\dagger} \phi))^2 \longrightarrow$$

$$\mathcal{O}_6 = -(\phi^{\dagger}\phi)^3 \longrightarrow$$

$$\mathcal{O}_{t\phi} = (\phi^{\dagger}\phi)(\bar{Q}\tilde{\phi}t) + h.c. \longrightarrow$$

$$\mathcal{O}_{\phi G} = (\phi^{\dagger} \phi) G^{a}_{\mu\nu} G^{a\mu\nu} \longrightarrow$$

$$\mathcal{O}_{tG} = (\bar{Q}\sigma^{\mu\nu}T^at)\phi G^a_{\mu\nu} + h.c.$$

- overall shift of couplings
 - shifts Higgs self-coupling
 - shifts top Yukawa coupling; $tar{t}HH$
 - pointlike Higgs to gluon couplings
 - chromomagnetic dipole operator

Specific UV-Complete New Physics Models

Investigations of specific UV-complete models:

- * Indisponible: complement EFT approach
- * EFT approach cannot capture new physics effects due to new light particles

Guidelines for model selection

- * simplicity
- * compatibility with relevant experimental and theoretical constraints
- * solve (some of the) flaws of the SM
- * testable in experiment

Validity of the models: they have comply with

- * experimental constraints
- * theoretical constraints

 \implies Electroweak rho parameter very close to 1: $\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} \approx 1$ (in SM automatically fulfilled)

* model with n scalar multiplets ϕ_i with weak isospin I_i , weak hypercharge Y_i and VEVs v_i of the neutral components: rho parameter at tree level

$$\rho_i = \frac{\sum_{i=1}^n \left[I_i (I_i + 1) - \frac{1}{4} Y_i^2 \right] v_i}{\sum_{i=1}^n \frac{1}{2} Y_i^2 v_i}$$

* SU(2) singlets with Y = 0 and SU(2) doublets with $Y = \pm 1$ satisfy $I(I + 1) = \frac{3}{4}Y^2$ and hence $\rho = 1$

Flavor-changing neutral currents (FCNCs): very stringent constraints from experiment solution for multi-Higgs models: apply symmetries such that all right-handed fermions of a given electric charge couple to exactly one Higgs doublet (cf. e.g.(N)2HDM type I...IV); minimal flavor violation (flavor violation only arises from CKM matrix)

⇒ Further constraints:

- * Electroweak precision tests (EWPTs): Peskin-Takeuchi resp. S,T,U parameters parametrize potential NP contributions to EW radiative corrections; S,T,U are zero for SM ref. point; assumptions:
 - EW gauge group is $SU(2)_L \times U(1)_Y \sim no$ additional gauge bosons beyond Z, W^{\pm}, γ , e.g. no Z'
 - New physics couplings from light fermions are suppressed ~> only oblique corrections (= vacuum polarization), no box and vertex corrections need to be considered
 - NP energy scale is large compared to the EW scale ~> expansion in q^2/M^2 , M = NP scale
 - => parametrization in terms of four vacuum polarization functions: self-energies of the Z, W^{\pm}, γ and mixing between Z and γ induced by loop diagrams

➡ Further constraints:

- * Electroweak precision tests S,T,U parameters
 - S parameter: measures difference between left-handed & right-handed fermions w/ weak isospin ~> tightly constrains number of new fourth-generation chiral fermions
 - T parameter: measures isospin violation (<- sensitive to loop corrections to Z and W vacuum polarization)
 - S and T parameter: affected by varying the Higgs boson mass
 Before discovery: mass of Higgs boson constrained by EWPTs to lie within close to
 LEP lower bound (114 GeV) and 200 GeV.
 - U parameter: not very useful in practice, parametrizes dim-8 effects
- * Flavour constraints: NP effects to flavor observables from loop corrections
 - Example: $B \rightarrow X_{s\gamma}$ receives NP contributions from H^{\pm} exchange;

sets lower bound of about 800 GeV on m_{H^\pm} in the 2HDM type II

➡ Further constraints:

- * Higgs data:
 - one of the Higgs bosons must have a mass of 125 GeV and behave very SM-like, i.e. comply with LHC Higgs data
 - remaining Higgs bosons have to comply with LHC exclusion limits from searches for additional Higgs bosons
- * Direct searches for new particles predicted by the model:
 - model has to respect exclusion limits on these particles (e.g. lower bounds on stop or gluino masses in supersymmetric models)
- * Low-energy observables like the anomalous magnetic moment
- * Electric Dipole Moment (EDM) constraints: stringent constraints on CP violation in CP-violating models
- * Dark Matter (DM) observables (relic density, direct and indirect detection limits): constrains models w/ DM candidate

Theory Constraints on Extended Higgs Sectors

- ➡ Theory constraints: (will be discussed in detail below)
- * Higgs potential bounded from below
- * EW vacuum with v=246 GeV is the global minimum
- * Perturbative unitarity

Parameter Scans of the Models

Parameter scans w/ constraints: Reduction of the parameter space to the still allowed parameter space ~> sharpens predictions of the models

⇒ Parameter scans performed with ScannerS:

[Coimbra, Sampaio, Santos; MM, Sampaio, Santos, Wittbrodt]

- ScannerS: Tool for performing scans in models with extended Higgs sectors checking for the theoretical and experimental constraints
- link to HiggsTools to check for Higgs constraints

[Bahl,Biekötter,Bechtle,Heinemeyer,Li,Paasch,Weiglein,Wittbrodt]

- link to MicrOMEGAs to check for Dark Matter constraints

[Bélanger,Boudjema,Pukhov eal]

Higgs Realization

Weakly coupled models

SM and its singlet, doublet, triplet extensions, SUSY

New particles necessary to stabilize the Higgs mass

Strongly-interacting dynamics

Composite Higgs Models

Resonances for unitarity Higgs boson composite object

Weakly or Strongly Interacting Higgs?

Scattering of longitudinally polarized W bosons

$$\mathcal{A} = rac{G_F s}{8\pi\sqrt{2}}$$

Higgs boson ensures unitarity of the W scattering (If its mass is ≤ 1 TeV.)

SM fails at the Planck scale.

Is there a reason to assume that there is New Physics between the weak and the Planck scale?

Weakly or Strongly Interacting Higgs?

Scattering of longitudinally polarized W bosons

Higgs boson ensures unitarity of the W scattering (If its mass is ≤ 1 TeV.)

SM fails at the Planck scale.

Is there a reason to assume that there is New Physics between the weak and the Planck scale?

Singlet Extensions

Complex Singlet Extended SM (CXSM)

Solution ⇒ Add complex singlet field w/ hypercharge 0 to the SM Higgs sector:

S = S + iA

☞ CxSM Higgs potential (renormalizable, w/ global softly broken U(1) symmetry):

$$V_{\text{CxSM}} = \frac{m^2}{2} H^{\dagger} H + \frac{\lambda}{4} (H^{\dagger} H)^2 + \frac{\delta_2}{2} H^{\dagger} H |\mathbb{S}|^2 + \frac{b_2}{2} |\mathbb{S}|^2 + \frac{d_2}{4} |\mathbb{S}|^4 + \left(\frac{b_1}{4} \mathbb{S}^2 + a_1 \mathbb{S} + c.c.\right)$$

Doublet and singlet fields:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} G^+ \\ v + h + iG^0 \end{pmatrix} \text{ and } \mathbb{S} = \frac{1}{\sqrt{2}} \left[v_S + \mathbb{S} + i(v_A + A) \right]$$

v=246 GeV electroweak VEV; v_S , v_A singlet VEVs of real and imaginary field component

- ⇒ Applying discrete symmetries: possibility to have DM candidate, e.g. impose two separate discrete symmetries: S -> -S and A -> -A (b₁ ∈ ℝ, a₁ = 0)
 > v_A=v_S=0 => h is SM Higgs boson, 2 Dark Matter particles (S,A)
 - v_A=0 => A is the Dark Matter candidate, h mixes with S => 2 visible Higgs bosons h_i (i=1,2), one must behave SM-like

<u>Spectrum</u>: h_1 , h_2 , A; one of the $h_{1,2}$ is the h_{125}

Complex Singlet Extended SM (CXSM)

⇒ Add complex singlet field w/ hypercharge 0 to the SM Higgs sector:

S = S + iA

© CxSM Higgs potential (renormalizable, w/ global softly broken U(1) symmetry):

$$V_{\text{CxSM}} = \frac{m^2}{2} H^{\dagger} H + \frac{\lambda}{4} (H^{\dagger} H)^2 + \frac{\delta_2}{2} H^{\dagger} H |\mathbb{S}|^2 + \frac{b_2}{2} |\mathbb{S}|^2 + \frac{d_2}{4} |\mathbb{S}|^4 + \left(\frac{b_1}{4} \mathbb{S}^2 + a_1 \mathbb{S} + c.c.\right)$$

Doublet and singlet fields:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} G^+ \\ v + h + iG^0 \end{pmatrix} \text{ and } \mathbb{S} = \frac{1}{\sqrt{2}} \left[v_S + \mathbb{S} + i(v_A + A) \right]$$

v=246 GeV electroweak VEV; v_S , v_A singlet VEVs of real and imaginary field component

Applying discrete symmetries: possibility to have DA impose two separate discrete symmetries: S -> -S at > v_A=v_S=0 => h is SM Higgs boson, 2 Dark Matter pa
 v_A=0 => A is the Dark Matter candidate, h mixes w one must behave SM-like
 Spectrum: h₁, h₂, A; one of the h_{1,2} is the h₁₂₅

LHC Test: Higgs Decay into 2 DM Particles $h_{125} \rightarrow AA$

Parameter point allowed at leading order may be excluded at next-to-leading order and vice versa

LHC Test: Higgs Decay into 2 DM Particles $h_{125} \rightarrow AA$

Parameter point allowed at leading order may be excluded at next-to-leading order and vice versa

LHC Test: Higgs Decay into 2 DM Particles $h_{125} \rightarrow AA$

Parameter point allowed at leading order may be excluded at next-to-leading order and vice versa

Compatibility w/ Direct Detection Constraints

m₁₂₅ mass of SM-like Higgs, m₅ mass of non-SM-like Higgs SI σ : spin-independent DM-nucleon scattering cross section

Compatibility w/ Relic Density

[Egle,MM,Santos,Viana,'23]

CRC YS Meeting, 25-27/9/2024, KIT

Real Singlet Extended SM (RXSM)

 \Rightarrow Add real singlet field S w/ discrete \mathbb{Z}_2 symmetry (S $\rightarrow -S$) to the SM Higgs sector

Sost general renormalizable RxSM Higgs potential:

$$V_{\rm RxSM} = \frac{m^2}{2} H^{\dagger} H + \frac{\lambda}{4} (H^{\dagger} H)^2 + \frac{\lambda_{HS}}{2} H^{\dagger} H S^2 + \frac{m_S^2}{2} S^2 + \frac{\lambda_S}{4!} S^4$$

➡ Higgs doublet and singlet field:

$$H = \frac{1}{\sqrt{2}} \left(\begin{array}{c} G^+ \\ v + h + iG^0 \end{array} \right) \quad \text{and} \quad S = v_S + s$$

v=246 GeV electroweak SM VEV; v_S singlet VEV

➡ 2 possible phases:

Symmetric phase w/ $v_S = 0$: h is SM Higgs, S is DM candidate Broken phase w/ $v_S \neq 0$: h mixes with S \rightarrow 2 visible Higgs bosons h_i (i = 1,2)

The 2-Higgs-Doublet Model (2HDM)

The 2-Higgs-Doublet Model (2HDM)

S. I. M. P. L. E

v v v z

Supersymmetric Posthers

 Image: Constraint of the second se

Ve Vy Vz Xj

E F T X

- The 2-Higgs-Doublet Model (2HDM) Motivation:
 - one of the simplest SM extensions
 - provides DM candidate in its inert version
 - supersymmetry requires introduction of two Higgs doublets
 - provides strong-first-order phase transition
 (one of the three Sakharov conditions for the generation of the baryon asymmetry through EW baryogenesis)

CRC YS Meeting, 25-27/9/2024, KIT

The 2-Higgs-Doublet Model (2HDM)

➡ Compatibility with constraints?

* Rho parameter: fulfilled as it is a doublet extension

* Flavour-changing neutral currents: will be discussed below

* Unitarity constraints:

 $V_L V_L \rightarrow V_L V_L$, $f_+ \bar{f}_+ \rightarrow V_L V_L$ (f_+ =fermion w/ positive helicity) must not violate unitarity bounds

SM: \exists Higgs w/ couplings $g_{HWW} = \frac{gm_W}{2}$ and $g_{Hff} = \frac{gm_f}{\sqrt{2}m_W}$

2HDM:, \exists two scalar Higgs bosons: $h_i = h, H$ with sum rules for the couplings:

$$\sum_{i} g_{h_iVV}^2 = g_{hVV}^2 + g_{HVV}^2 = (g_{HVV}^{SM})^2 \quad \text{and} \quad \sum_{i} g_{h_iVV}g_{h_iff} = g_{hVV}g_{hff} + g_{HVV}g_{Hff} = g_{HVV}^{SM}g_{Hff}^{SM}$$

M.M. Mühlleitner, KIT

CRC YS Meeting, 25-27/9/2024, KIT

The 2HDM Higgs Potential

[T.D.Lee, Phys.Rev.D8(1973)1226; Branco eal., 1106.0034]

⇒ 2 Higgs doublets Φ_i (i = 1,2) w/ potential having the following properties: SU(2)_LxU(1)_Y gauge-invariant, renormalizable, CP conservation, discrete \mathbb{Z}_2 symmetry under which $\Phi_1 \rightarrow -\Phi_1$, $\Phi_2 \rightarrow \Phi_2$ => potential w/ softly broken \mathbb{Z}_2

$$V = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - m_{12}^2 \left(\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1 \right) + \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \Phi_1^{\dagger} \Phi_1 \Phi_2^{\dagger} \Phi_2 + \lambda_4 \Phi_1^{\dagger} \Phi_2 \Phi_2^{\dagger} \Phi_1 + \frac{\lambda_5}{2} \left[\left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \left(\Phi_2^{\dagger} \Phi_1 \right)^2 \right]$$

CP conservation: all parameters are real

 $\implies \text{Electroweak minimum of the potential:} \quad \langle \Phi_1 \rangle = \begin{pmatrix} 0 \\ \frac{v_1}{\sqrt{2}} \end{pmatrix} \quad \text{and} \quad \langle \Phi_2 \rangle = \begin{pmatrix} 0 \\ \frac{v_2}{\sqrt{2}} \end{pmatrix}$

$$rightarrow$$
 Expansion of Higgs doublets around VEVs: $\Phi_a = \left(egin{arrow}{c} \phi_a^+ \ rac{v_a +
ho_a + i\eta_a}{\sqrt{2}} \end{array}
ight) , \qquad a=1,2$

The 2HDM Higgs Spectrum

➡ Higgs spectrum and masses:

- Plug in expansion around EW minimum in the potential V
- collect all terms bilinear in the fields ~> mass matrices
- diagonalize mass matrices w/ orthogonal matrices that are functions of the mixing angle α (neutral CP-even matrix) and mixing angle β (neutral CP-odd and charged matrices) ~>

physical states

$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} c_{\alpha} & s_{\alpha} \\ -s_{\alpha} & c_{\alpha} \end{pmatrix} \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix} , \quad \begin{pmatrix} G^0 \\ A \end{pmatrix} = \begin{pmatrix} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} , \quad \begin{pmatrix} G^+ \\ H^+ \end{pmatrix} = \begin{pmatrix} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{pmatrix} \begin{pmatrix} \phi_1^+ \\ \phi_2^+ \end{pmatrix}$$

The 2HDM Higgs Masses

➡ Higgs spectrum and masses:

2 neutral CP-even Higgs bosons: h and H, with $m_h \le m_H$ 1 neutral CP-odd Higgs boson: A 2 charged Higgs bosons: H^+, H^-

Mixing angle $\beta : \tan \beta = \frac{v_2}{v_1}$; to reproduce the W and Z masses, we must have $v_1^2 + v_2^2 = v^2$

$$\text{Masses:} \qquad m_{H^{\pm}}^2 = \left(\frac{m_{12}^2}{v_1 v_2} - \frac{\lambda_4 + \lambda_5}{2}\right) (v_1^2 + v_2^2) = \frac{M^2}{2} - \frac{1}{2} (\lambda_4 + \lambda_5) v^2 \qquad \qquad M^2 = \frac{m_{12}^2}{\sin\beta\cos\beta}$$

$$m_A^2 = \left(rac{m_{12}^2}{v_1 v_2} - \lambda_5
ight) (v_1^2 + v_2^2) = rac{M^2}{M^2} - \lambda_5 v^2$$

$$m_{H,h}^2 = rac{1}{2} \left[\mathcal{M}_{11} + \mathcal{M}_{22} \pm \sqrt{(\mathcal{M}_{11} - \mathcal{M}_{22})^2 + 4\mathcal{M}_{12}^2}
ight]$$

 \mathcal{M}_{ij} matrix elements of the mass matrix in the neutral CP-even sector

 \implies 2HDM input parameters: $m_h, m_H, m_A, m_{H^{\pm}}, m_{12}^2, \cos(\beta - \alpha), v, \tan \beta$

Flavour-Changing Neutral Currents (FCNC)

Problem w/ 2 Higgs doublets:

Mass and coupling matrices cannot be diagonalized simultaneously ~> FCNC at tree level!

Solution: Extend discrete \mathbb{Z}_2 symmetry of Higgs sector to Yukawa sector such that only one Higgs doublet couples to a given right-handed fermion field

➡ Four 2HDM types:

- <u>type I 2HDM</u>: All quarks couple to just one of the Higgs doublets (conventionally chosen to be Φ_2).
- <u>type II 2HDM</u>: The Q = 2/3 right-handed (RH) quarks couple to one Higgs doublet (conventionally chosen to be Φ_2) and the Q = -1/3 RH quarks couple to the other (Φ_1) .
- Lepton-specific model: The RH quarks all couple to Φ_2 and the RH leptons couple to $\overline{\Phi_1}$.
- <u>Flipped model</u>: The RH up-type quarks couple to Φ_2 , the RH down-type quarks couple to Φ_1 , as in type II, but now the RH leptons couple to Φ_2 .

Theory Constraints

Potential Bounded-From-Below: quartic part of the potential positive for arbitrarily large field values ~> (tree-level analysis)

[Deshpande,Ma,'78;Klimenko,'85]

Inclusion of higher-order effects: check the tree-level conditions for running λ_i at any scale Q up to which model is considered to be valid

$$\frac{d\lambda_i}{d\ln Q} = \beta_i(g_j)$$

Theory Constraints

Potential Bounded-From-Below: quartic part of the potential positive for arbitrarily large field values ~> (tree-level analysis)

$$\begin{array}{c} & \lambda_1 \ge 0 \ , \qquad \lambda_2 \ge 0 \\ & & \lambda_3 \ge -\sqrt{\lambda_1 \lambda_2} \ , \qquad \lambda_3 + \lambda_4 - |\lambda_5| \ge -\sqrt{\lambda_1 \lambda_2} \end{array}$$

[Deshpande,Ma,'78;Klimenko,'85]

Inclusion of higher-order effects: check the tree-level conditions for running λ_i at any scale Q up to which model is considered to be valid

$$\frac{d\lambda_i}{d\ln Q} = \beta_i(g_j)$$

⇒ Perturbative Unitarity:

make sure that the potential couplings do not become non-perturbatively large: analyze eigenvalues of the S matrix for scalar-scalar scattering amplitudes:

=> Require (tree-level perturbative unitarity:

$$\begin{aligned} |\lambda_3 - \lambda_4| &< 8\pi \\ |\lambda_3 + 2\lambda_4 \pm 3\lambda_5| &< 8\pi \\ \left|\frac{1}{2} \left(\lambda_1 + \lambda_2 + \sqrt{(\lambda_1 - \lambda_2)^2 + 4\lambda_4^2}\right)\right| &< 8\pi \\ \left|\frac{1}{2} \left(\lambda_1 + \lambda_2 + \sqrt{(\lambda_1 - \lambda_2)^2 + 4\lambda_5^2}\right)\right| &< 8\pi. \end{aligned}$$

CRC YS Meeting, 25-27/9/2024, KIT

Theory Constraints - The Vacuum

⇒ Electroweak vacuum w/ v=246 GeV is the global minimum: possible 2HDM vacuum directions ω_i

$$\Phi_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{1} + i \eta_{1} \\ \zeta_{1} + \omega_{1} + i \psi_{1} \end{pmatrix}, \quad \Phi_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{2} + \omega_{CB} + i \eta_{2} \\ \zeta_{2} + \omega_{2} + i (\psi_{2} + \omega_{CP}) \end{pmatrix}$$

neutral CP-conserving minima: ω_1, ω_2 neutral CP-violating minimum: ω_{CP} charge-breaking minimum: ω_{CB}

[Ferreira eal,'04;Barroso eal,'05;Ivanov,'07;Ivanov'08]

- If the potential has a CP-conserving minimum ω_1, ω_2 , then any other stationary point (either $\omega_{\rm CP}$ or $\omega_{\rm CB}$) is a saddle point w/ a higher value of the potential

[Ivanov'08;Barroso,'12,'13]

- Two CP-conserving minima could coexist, however! Panic Vacuum!

Vacuum w/ the symmetry breaking pattern (v=246 GeV) is the global minimum if and only if

 $D = m_{12}^2 (m_{11}^2 - \sqrt{\lambda_1 / \lambda_2} m_{22}^2) (v_2 / v_1 - (\lambda_1 \lambda_2)^{1/4}) > 0$

Theory Constraints - The Vacuum

Electroweak vacuum w/ v=246 GeV is the global minimum: possible 2HDM vacuum directions ω_i

$$\Phi_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{1} + i \eta_{1} \\ \zeta_{1} + \omega_{1} + i \psi_{1} \end{pmatrix}, \quad \Phi_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{2} + \omega_{CB} + i \eta_{2} \\ \zeta_{2} + \omega_{2} + i (\psi_{2} + \omega_{CD}) \end{pmatrix}$$

neutral CP-conserving minima: ω_1, ω_2 neutral CP-violating minimum: ω_{CP} charge-breaking minimum: ω_{CB} Note: These rules are No longer valid when vacuum is investigated including higher-order corrections

[Ferreira eal,'04;Barroso eal,'05;Ivanov,'07;Ivanov'08]

- If the potential has a CP-conserving minimum ω_1, ω_2 , then any other stationary point (either $\omega_{\rm CP}$ or $\omega_{\rm CB}$) is a saddle point w/ a higher value of the potential

[Ivanov'08;Barroso,'12,'13]

- Two CP-conserving minima could coexist, however! Panic Vacuum!

Vacuum w/ the symmetry breaking pattern (v=246 GeV) is the global minimum if and only if

 $D = m_{12}^2 (m_{11}^2 - \sqrt{\lambda_1 / \lambda_2} m_{22}^2) (v_2 / v_1 - (\lambda_1 \lambda_2)^{1/4}) > 0$

Theory Constraints

 Inclusion of renormalization group running of the parameters: (capture - "hopefully" - bulk of higher-order corrections)

[Basler,Ferreira,MM,Santos,'17]

- Perform RGE running of all potential parameters and VEVs starting at m_{Z}
- At each scale between $m_{\rm Z}$ and the Planck scale verify whether the theoretical constraints are still verified
- If yes, proceed to a higher scale and repeat

Note: Higgs mass values and quartic couplings are closely related \sim if at scale m_z we start with a heavy Higgs spectrum \sim start values of quartic couplings λ_i are large \sim scale up to which model remains perturbative, is lowered

Theory Constraints and High Scale Impact

Flavor constraints set stringent lower bound on $m_{H^{\pm}}$ in 2HDM Type II!

[Basler,Ferreira,MM,Santos,'17]

 $m_{H^{\pm}} \ge 500 GeV$ and requirement of validity up to the Planck scale \sim alignment (exp. & theor. constraints included) $\cos(\beta - \alpha) \approx 0$, i.e. h behaves very SM-like

See also [Chakrabarty eal; Bhupal Dev eal; Das,Saha; Chowdhury,Eberhardt; Ferreira eal; Cacchio eal; Cherchiglia,Nishi; Krauss eal; Goodsell,Staub; Braathen eal; ...]

What happens during evolution of the Universe?

What about the Higgs potential during the evolution of the Universe? investigation of effective Higgs potential at non-zero temperature

Strong First-Order Electroweak Phase Transition (SFOEWPT)

What happens during evolution of the Universe?

What about the Higgs potential during the evolution of the Universe? investigation of effective Higgs potential at non-zero temperature

Solution State State

$$\begin{aligned} V_{\text{tree}} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left[\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.} \right] . \end{aligned}$$

$$\Phi_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{1} + i \eta_{1} \\ \zeta_{1} + \frac{\omega_{1}}{\omega_{1}} + i \psi_{1} \end{pmatrix}, \quad \Phi_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{2} + \frac{\omega_{CB}}{\omega_{CB}} + i \eta_{2} \\ \zeta_{2} + \frac{\omega_{CB}}{\omega_{2}} + i (\psi_{2} + \frac{\omega_{CP}}{\omega_{CP}}) \end{pmatrix}$$

$$\begin{aligned} \left. \{ \omega_{\rm CB}, \, \omega_1, \, \omega_2, \, \omega_{\rm CP} \} \right|_{T=0} &= \{ 0, v_1, v_2, 0 \} \,, \text{ with} \\ \omega_{\rm EW} |_{T=0} &\equiv \sqrt{\omega_1^2 + \omega_2^2 + \omega_{\rm CB}^2 + \omega_{\rm CP}^2} \left|_{T=0} = \sqrt{v_1^2 + v_2^2} \equiv v = 246 \text{ GeV} \end{aligned}$$

Sample Benchmark Point BP1

• BP1 input parameters:

From [Aoki,Biermann,Borschensky,Ivanov,MM,Sakurai,'23]

$$\begin{split} \text{BP1:} \quad & \text{type} = 1 \,, \; \lambda_1 = 6.931 \,, \; \lambda_2 = & 0.2631 \,, \; \lambda_3 = 1.287 \,, \; \lambda_4 = 4.772 \,, \; \lambda_5 = 4.728 \,, \\ & m_{12}^2 = 1.893 \times 10^4 \, \text{GeV}^2 \,, \; \tan\beta = 16.578 \;. \end{split}$$

Transition History

high-T phase, low-T phase

[Basler,Biermann,MM,Müller,Santos,Viana, 24]

- first-order PT from neutral (red)
 to charge-breaking CB phase (blue)
- second-order PT into a neutral minimum

	BP1
phases _{BSMPT}	0: {216, 400}
	1: $\{0, 237\}$
$\operatorname{pairs}_{\operatorname{BSMPT}}$	0: $[0 \rightarrow 1] \{216, 237\}$
$t_{\tt MinimaTracer}$	$41.47\mathrm{s}$
T_c	$\{226.3\}$
T_n	$\{222.9, 222.9\}$
T_p	$\{222.6\}$
$\hat{T_f}$	$\{222.6\}$
$t_{\tt CalcTemps}$	$6.87\mathrm{min}$
history	0-(0) ightarrow 1

Measuring EWSB

- Importance of the trilinear Higgs self-coupling:
 - Determines shape of the Higgs potential
 - Sensitive to beyond-SM physics
 - Important input for electroweak phase transition*

*matter-asymmetry through electroweak baryogenesis

Importance of the trilinear Higgs self-coupling:

- Determines shape of the Higgs potential
- Sensitive to beyond-SM physics
- Important input for electroweak phase transition*

*matter-asymmetry through electroweak baryogenesis

Measurement of λ_{HHH} - Higgs Pair Production

[HH, White paper]

Measurement of λ_{HHH} - Higgs Pair Production

Higgs Pair Production through Gluon Fusion

+Loop mediated at leading order - SM: third generation dominant

+ Threshold region sensitive to λ ; large M_{HH}: sensitive to c_{tt}/c_{bb} [e.g. boosted Higgs pairs]

[Baglio,Djouadi,Gröber,MM,Quévillon,Spira]

$$gg \rightarrow HH: rac{\Delta\sigma}{\sigma} \sim -rac{\Delta\lambda}{\lambda}$$

decreasing with M_{HH}

Experimental Results - Limits on λ_{HHH}

CRC YS Meeting, 25-27/9/2024, KIT

New Physics Effects in Higgs Pair Production

Cross section: - different trilinear couplings - different Yukawa couplings
 novel particles in the loops - resonant enhancement - novel couplings

+Example NMSSM:

[taken from <u>Dao.MM.Streicher.Walz</u>, 13]

Example 2-Higgs-Doublet Model (2HDM) charged $H^+, H^ \stackrel{\rm EWSB}{\longrightarrow}$ neutral, CP-even h, Hneutral, CP-odd A2HDM Higgs sector: 2 Higgs doublets $H=H_{SM}$ $h=H_{SM}$ [Abouabid eal,'21] • • R2HDM-I Parameter scan points compatible resonant enhancement → H_{SM}H_{SM}) [pb] for $m_H = 2^* m_h$ w/ all relevant 0.5 theoretical & g 000 experimental Н \boldsymbol{q} constraints $g \cup QQ$ 0.1 0.05 SM SM HH cxn value (LO)

Allowed Ranges of Trilinear Higgs Couplings

[Abouabid eal,'21]

Large values		R2HDM		C2HDM	
for SFOEWPT!		$y_{t,H_{ m SM}}^{ m R2HDM}/y_{t,H}$	$\lambda_{3H_{ m SM}}^{ m R2HDM}/\lambda_{3H}$	$y_{t,H_{ m SM}}^{ m C2HDM}/y_{t,H}$	$\lambda_{3H_{ m SM}}^{ m C2HDM}/\lambda_{3H}$
_	light I	0.8931.069	-0.0961.076	0.8981.035	-0.0351.227
	medium I	n.a.	n.a.	0.8891.028	0.2511.172
	heavy I	0.9461.054	0.4811.026	0.8931.019	0.6711.229
	light II	0.9511.040	0.6920.999	0.9561.040	0.0960.999
	medium II	n.a.	n.a.	_	_
	heavy II	_	_	_	_
		N2HDM		NMSSM	
		$y_{t,H_{ m SM}}^{ m N2HDM}/y_{t,H}$	$\lambda_{3H_{ m SM}}^{ m N2HDM}/\lambda_{3H}$	$y_{t,H_{ m SM}}^{ m NMSSM}/y_{t,H}$	$\lambda_{3H_{ m SM}}^{ m NMSSM}/\lambda_{3H}$
	light I	0.8951.079	-1.1601.004	n.a.	n.a.
	medium I	0.8741.049	-1.2471.168	n.a.	n.a.
	heavy I	0.8931.030	0.7701.112	n.a.	n.a.
	light II	0.9421.038	-0.6080.999	0.8261.003	0.0240.747
	medium II	0.9421.029	0.6130.994	0.9161.000	-0.5020.666
	heavy II	—	—	_	—
Comparison with EFT

• Effective Lagrangian: $\Delta \mathcal{L}_{\text{non-lin}} \supset -m_t t \bar{t} \left(c_t \frac{h}{v} + c_{tt} \frac{h^2}{2v^2} \right) - c_3 \frac{1}{6} \left(\frac{3M_h^2}{v} \right) h^3$

c₃: trilinear coupling modification; c_t : top-Yukawa coupling modification; c_{tt} : effective two-Higgs-two-fermion coupling no c_q , c_{qq} : no new heavy colored BSM particles assumed

* Matching relations of our specific BSM models:

Higgs-top Yukawa coupling	:			$g_t^{H_{ ext{SM}}}(lpha_i,eta)$	\rightarrow	c_t
trilinear Higgs coupling	:		<u>g</u>	$\frac{\frac{H_{\rm SM}H_{\rm SM}H_{\rm SM}(p_i)}{3}}{3M_{H_{\rm SM}}^2/v}$	\rightarrow	c_3
two-Higgs-two-top quark coupling	:	$\sum_{k=1}^{k_{\max}} \left(\right)$	$\left(\frac{-v}{m_{H_k}^2}\right)$	$g_3^{H_k H_{\rm SM} H_{\rm SM}}(p_i) g_t^{H_k}(\alpha_i,\beta)$	\rightarrow	c_{tt}

g lle

للوور _و

2HDM versus EFT

[Abouabid, Arhrib, Azevedo, El Falaki, Ferreira, MM, Santos, 21]

+R2HDM T2 sample parameter point:

$m_{H_1} \; [\text{GeV}]$	$m_{H_2} \; [\text{GeV}]$	$m_A \; [\text{GeV}]$	$m_{H^{\pm}} \; [\text{GeV}]$	α	aneta	$m_{12}^2 \; [{ m GeV^2}]$
125.09	1131	1082	1067	-0.924	0.820	552749

+ corresponding EFT values:

 $g_t^{H_2} = -1.126$

$$c_3 = 0.782, c_t = 0.951, c_{tt} = -0.122$$

*goodness of approximation?:

$m_{H_2} \; [\text{GeV}]$	Γ_{H_2} [GeV]	c_{tt}	$g_3^{H_2H_1H_1}$ [GeV]	$\sigma_{ m R2HDM}^{ m w/res}$ [fb]	$\sigma_{\mathrm{SMEFT}}^{c_{tt} \neq 0}$ [fb]	ratio
1131	78.80	-0.1222	-504.52	30.5	26.1	86%
1200	89.74	-0.1031	-479.29	27.7	24.8	90%
1500	470.2	-4.85310^{-2}	-352.42	21.8	21.4	98%

+ Remark:

$$\sigma_{\text{R2HDM}}^{\text{w/o res}} = 18.6 \text{ fb} \text{ and } \sigma_{\text{SMEFT}}^{c_{tt}=0} = 18.6 \text{ fb}$$

N2HDM Versus EFT

[Abouabid, Arhrib, Azevedo, El Falaki, Ferreira, MM, Santos, 21]

+N2HDM T1 sample parameter point:

$m_{H_1} \; [\text{GeV}]$	$m_{H_2} \; [\text{GeV}]$	$m_{H_3} \; [\text{GeV}]$	$m_A \; [\text{GeV}]$	$m_{H^{\pm}} \; [\text{GeV}]$	aneta
125.09	269	582	390	380	4.190
α_1	α_2	$lpha_3$	$v_s \; [\text{GeV}]$	$\operatorname{Re}(m_{12}^2)$ [GeV ²]	
1.432	-0.109	0.535	1250	28112	

 $g_t^{H_2} = 0.179$ and $g_t^{H_3} = 2.337 \times 10^{-2}$

+ corresponding EFT values:

$$c_3 = 0.877, c_t = 1.012, c_{tt} = 4.127 \times 10^{-2}$$

+ goodness of approximation?: (mH3 kept fixed)

m_{H_2}	Γ_{H_2}	$c_{tt}^{H_2}$	c_{tt}	$g_3^{H_2H_1H_1}$	$\sigma_{ m N2HDM}^{ m w/\ res}$ [fb]	$\sigma_{\mathrm{SMEFT}}^{c_{tt} \neq 0}$ [fb]	ratio
269	0.075	4.410×10^{-2}	4.127×10^{-2}	-72.42	183.70	20.56	11%
300	0.083	3.170×10^{-2}	2.877×10^{-2}	-64.80	162.80	21.28	13%
400	0.177	9.544×10^{-3}	6.721×10^{-3}	-34.68	43.33	22.60	52%
420	0.229	6.895×10^{-3}	4.063×10^{-3}	-27.62	31.70	22.76	72%
440	0.284	4.600×10^{-3}	1.767×10^{-3}	-20.22	26.26	22.90	87%
450	0.315	3.564×10^{-3}	7.323×10^{-4}	-16.39	24.84	22.96	92%
500	2.567	-7.132×10^{-4}	-3.545×10^{-3}	4.05	23.56	23.22	99%

Electroweak Baryogenesis

M.M. Mühlleitner, KIT

CRC YS Meeting, 25-27/9/2024, KIT

Electroweak Baryogenesis

• Electroweak Baryogenesis (EWBG): generation of the observed baryon-antibaryon asymmetry in the electroweak phase transition (EWPT) [Riemer-Sorensen, Jenssen '17]

$$5.8 \cdot 10^{-10} < \frac{n_B - n_{\bar{B}}}{n_{\gamma}} < 6.6 \cdot 10^{-10}$$

• Sakharov Conditions:

- * (i) B number violaton (sphaleron processes)
- * (*ii*) C and CP violation
- * (*iii*) Departure from thermal equilibrium
- Additional constraint: EW phase transition must be strong first order PT [Quiros '94; Moore '99]

$$\xi_c \equiv \frac{\left< \Phi_c \right>}{T_c} \ge 1$$

 $\langle \Phi_c \rangle$ and T_c field configuration and temperature at phase transition

[Sakharov '67]

Strong First-Order Electroweak Phase Transition (SFOEWPT)

Electroweak Baryogenesis (EWBG)

• Electroweak Baryogenesis (EWBG): generation of the observed baryon-antibaryon asymmetry in the electroweak phase transition (EWPT) [Riemer-Sorensen, Jenssen '17]

$$5.8 \cdot 10^{-10} < \frac{n_B - n_{\bar{B}}}{n_{\gamma}} < 6.6 \cdot 10^{-10}$$

- Sakharov Conditions:
 * (i) B number violaton (sphaleron processes)
 * (ii) C and CP violation
 * (iii) Departure from thermal equilibrium
 SM: smooth cross-over
 not enough CP violation
 large trilinear Higgs coupling required
 > physics beyond the SM needed Extended Higgs sectors!
- Additional constraint: EW phase transition must be strong first order PT [Quiros '94; Moore '99]

$$\xi_c \equiv \frac{\left< \Phi_c \right>}{T_c} \ge 1$$

 $\langle \Phi_c \rangle$ and T_c field configuration and temperature at phase transition

EWBG in a Nutshell

Strong-First-Order Phase Transitions (SFOPT) and Gravitational Waves

Strong-First-Order Phase Transitions (SFOPT) and Gravitational Waves

The Model "CP in the Dark"

+Next-to-Minimal 2-Higgs Doublet Model:

[Azevedo,Ferreira,MM,Patel,Santos,Wittbrodt,'18]

$$V^{(0)} = m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 + \frac{m_S^2}{2} \Phi_S^2 + \left(A \Phi_1^{\dagger} \Phi_2 \Phi_S + \text{ h.c.}\right) + \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{\lambda_5}{2} [(\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2] + \frac{\lambda_6}{4} \Phi_S^4 + \frac{\lambda_7}{2} |\Phi_1|^2 \Phi_S^2 + \frac{\lambda_8}{2} |\Phi_2|^2 \Phi_S^2.$$

* with one discrete \mathbb{Z}_2 symmetry: $\Phi_1 \to \Phi_1$, $\Phi_2 \to -\Phi_2$, $\Phi_S \to -\Phi_S$

one SM-like Higgs plus dark sector: h₁,h₂,h₃,H[±]

 + trilinear coupling A is complex: dark sector with explicit CP violation <- not constrained by electric dipole moment

Vacuum Structure of "CP in the Dark"

+General vacuum structure at T≠0:

$$\Phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_1 + i\eta_1 \\ \zeta_1 + \omega_1 + i\Psi_1 \end{pmatrix}, \quad \Phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_2 + \omega_{\rm CB} + i\eta_2 \\ \zeta_2 + \omega_2 + i(\Psi_2 + \omega_{\rm CP}) \end{pmatrix}, \quad \Phi_S = \zeta_S + \omega_S$$

electroweak VEVs: ω_{1}, ω_{2} , CP-violating VEV: ω_{CP} charge-breaking VEV: ω_{CB} (unphysical; found to be zero for all of our scan points) Z₂-symmetry breaking VEV: ω_{5}

+General vacuum structure at T=0:

$$\Phi_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{1} + i\eta_{1} \\ \zeta_{1} + \nu_{1} + i\Psi_{1} \end{pmatrix}, \quad \Phi_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{2} + i\eta_{2} \\ \zeta_{2} + i\Psi_{2} \end{pmatrix}, \quad \Phi_{S} = \zeta_{S}$$
$$\langle \Phi_{1} \rangle |_{T=0} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \mathbf{v_{1}} \end{pmatrix}, \quad \langle \Phi_{2} \rangle |_{T=0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \langle \Phi_{S} \rangle |_{T=0} = 0$$

$$\omega_1 |_{T=0 \text{ GeV}} = v1 \equiv v = 246.22 \text{ GeV}$$

GW from (S)FOEWPT in "CP in the Dark"*

- 3 points w/ SNR(LISA-3yrs)>10, compatible w/ all relevant theor. and exp. constraints
- all points lead to EW minimum at T=0 (no vacuum trapping)
- all of the LISA-sensitive points (colored points) have SFOEWPT: ξ_c >1

GW from (S)FOEWPT in "CP in the Dark"*

- 3 points w/ SNR(LISA-3yrs)>10, compatible w/ all relevant theor. and exp. constraints
- all points lead to EW minimum at T=0 (no vacuum trapping)
- all of the LISA-sensitive points (colored points) have SFOEWPT: ξ_c >1

DM Observables and GW

Conclusions

Open Problems of the SM ---> BSM w/ (mostly extended) Higgs sectors

 Higgs tool: new physics model, flavour/matter puzzle, Dark Matter, baryon asymmetry, vacuum stability, evolution of the universe

Precision investigation of the Higgs boson:
 -> establish electroweak symmetry breaking
 -> indirect constraints on BSM physics

Not miss any new physics hint:

-> sophisticated expermental investigations, precise theory predictions

-> multi-pronged approach (collider physics - astroparticle physics - cosmology)

Exciting times ahead!

Example EFT Operators Contributing to Higgs Pair Production

Non-linear EFT:

couplings of one/two Higgs bosons to gluons become linear independent couplings of one/two Higgs bosons to fermions become linear independent

can be probed directly in di-Higgs productions

Processes w/ 0,1,2 Higgs boson need to be connected to disentangle linear/non-linear dynamics

Note: EFT operators destroy SM cancellation between triangle and box diagrams \sim limits derived on λ_{HHH} depend on EFT description

EFT Effect at NLO QCD in HH

K-factor: ratio of NLO to LO observable

[Buchalla, Capozi, Celis, Heinrich, Scyboz, '18]

Tops integrated out at NLO:

- flat dependence of K-factors

[see also de Florian, Fabre, Mazzitelli, 17]

Inclusion of full top dependence at NLO: - non-uniform K-factors

[Gröber, MM, Spira, Streicher, '15]

Decoupling

- Alignment limit: one of the neutral Higgs bosons has to be approximately aligned with the direction of the Higgs VEV in field space ~> limit of a SM Higgs
- Alignment with decoupling: Alignment limit in extended Higgs sector realized if all additional Higgs states are very heavy: decoupling limit
- Alignment without decoupling: occurs generically in 2HDMs

 \circledast Masses of the heavy 2HDM Higgs bosons take the form: $\Phi \equiv H, H^{\pm}, A$

$$m_{\Phi}^2 = M^2 + \lambda_i v^2 (+\mathcal{O}(v^4/M^2))$$

 λ_i linear combination of $\lambda_1, \ldots, \lambda_5$

- ⇒ In case $M^2 \gg \lambda_i v^2$: heavy Higgs bosons decouple, h behaves SM-like (sin($\beta \alpha$) → 1) alignment/decoupling limit
- ⇒ alignment without decoupling: H can become SM-like particle ($cos(\beta \alpha) \rightarrow 1$) ~> light Higgs h with mass below 125 GeV in the spectrum
- \implies Strong coupling regime: $M^2 \leq \lambda_i v^2$: large value of m_{Φ} for λ_i large (limited by perturbativity)

Flavour-Changing Neutral Currents

$$\Rightarrow \mathsf{Yukawa Lagrangian:} \quad \mathcal{L}_Y = -\left\{ \bar{Q}'_L (\Gamma_1 \Phi_1 + \Gamma_2 \Phi_2) D'_R - \bar{Q}'_L (\Delta_1 \tilde{\Phi}_1 + \Delta_2 \tilde{\Phi}_2) U'_R \right. \\ \left. + \bar{L}' (\Pi_1 \Phi_1 + \Pi_2 \Phi_2) E'_R + h.c. \right\},$$

where Q'_L, L'_L denote the left-handed quark and lepton doublets and $Q \equiv (U, D)^T$, $L \equiv (\nu, E)^T$, with $U \equiv (u, c, t)^T$, $D \equiv (d, s, b)^T$, $\nu \equiv (\nu_e, \nu_\mu, \nu_\tau)^T$ and $E \equiv (e, \mu, \tau)^T$. The indices L, R denote left- and right-handed fermions f given by

$$f_{L,R} = P_{L,R}f \equiv \frac{1}{2}(1 \mp \gamma_5)f$$
.

We have defined $\tilde{\Phi}_a = (\Phi_a^T \epsilon)^{\dagger}$, with

$$\epsilon = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \; .$$

The couplings Γ_a, Δ_a and Π_a (a = 1, 2) are 3×3 complex matrices in flavour space.

Problem w/ 2 Higgs doublets: Mass and coupling matrices cannot be diagonalized simultaneously ~> FCNC at tree-level!

 Solution: Extend discrete Z₂ symmetry of Higgs sector to Yukawa sector such that only one Higgs doublet couples to a given right-handed fermions

Flavour-Changing Neutral Currents

• Four 2HDM types:

- <u>type I 2HDM</u>: All quarks couple to just one of the Higgs doublets (conventionally chosen to be Φ_2).
- <u>type II 2HDM</u>: The Q = 2/3 right-handed (RH) quarks couple to one Higgs doublet (conventionally chosen to be Φ_2) and the Q = -1/3 RH quarks couple to the other (Φ_1) .
- Lepton-specific model: The RH quarks all couple to Φ_2 and the RH leptons couple to Φ_1 .
- <u>Flipped model</u>: The RH up-type quarks couple to Φ_2 , the RH down-type quarks couple to Φ_1 , as in type II, but now the RH leptons couple to Φ_2 .
- Alternative solution: alignment in flavor space of the Yukawa couplings

$$\Gamma_2 = \xi_d e^{-i\theta} \Gamma_1 , \quad \Delta_2 = \xi_u^* e^{i\theta} \Delta_1 , \quad \Pi_2 = \xi_l e^{-i\theta} \Pi_1$$

masses and couplings are proportional to each other ~> can be diagonalized simultaneously four Yukawa types appear as special cases of the aligned 2HDM (A2HDM)

Transition History - Comparison W/ CosmoTransitions

high-T phase, low-T phase

[Basler,Biermann,MM,Müller,Santos,Viana, 24]

Overview on BSM Higgs Pair Production

Overview of Higgs Pair production possibilities including theoretical and experimental constraints in archetypical BSM Higgs sectors including different symmetries

provide benchmark points / lines / planes for experiment

Investigated Models

M.M. Mühlleitner, KIT

CRC YS Meeting, 25-27/9/2024, KIT

Investigated Models

+ Following results based on:

Abouabid, Arhrib, Azevedo, El Falaki, Ferreira, MMM, Santos, "Benchmarking Di-Higgs Production in Extended Higgs Sectors", JHEP 09 (2022) 011

How Define Resonant Dí-Higgs Production?

Additional Higgs bosons H_k : possible resonant enhancement of the <u>di-Higgs</u> cross section

- * If m_{Hk} < m_{Hi} + m_{Hj} then clear case of "non-resonant" production
- If m_{Hk} > m_{Hi} + m_{Hj} : resonance contribution may be suppressed due to small couplings, large masses, large widths or destructive interference effects
- * Distinction resonant/non-resonant: if cross section** more than 10% of total di-Higgs result ~> resonant limits From an experimental point of view the cross section would not be distinguishable from "non-resonant" production then. => Our recipe:
- * HiggsBounds turned off for <u>di-Higgs</u>
- * Use SusHi to calculate $\sigma(H_k)$ for all possible intermediate resonances H_k at NNLO QCD
- * Calculate $\sigma(H_k) \times BR(H_k \rightarrow H_{SM} H_{SM})$ and compare it with experiment
- * Exception: exp. limits assume narrow resonance -> we keep points if $(\Gamma_{tot}(H_k)/m_{Hk})_{limit} > 5\%$

Provided final states on request: 4b, (2b)(2tau), (2b)(2gamma), (2b)(2W), (2b)(2Z), (2W)(2gamma), 4W

Suppress interfering Higgs signals by excluding scenarios with neighboring Higgs masses below 5 GeV.

• CP violation: one of the three Sakharov conditions for the generation of the baryon-anti baryon asymmetry through electroweak baryogenesis

• C2HDM Higgs potential: w/ softly broken \mathbb{Z}_2 symmetry

[Ginzburg,Krawczyk,Osland,'02]

$$\begin{split} V &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left(m_{12}^2 \Phi_1^{\dagger} \Phi_2 + h \cdot c \cdot \right) + \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left[\frac{\lambda_5}{2} \left(\Phi_1^{\dagger} \Phi_2 \right)^2 + h \cdot c \cdot \right] \end{split}$$

All parameters are real except for m_{12}^2 and λ_5 : $m_{12}^2 = |m_{12}^2| e^{i\phi(m_{12}^2)}$, $\lambda_5 = |\lambda_5| e^{i\phi(\lambda_5)}$

The two complex phases are not independent of each other

$$2\operatorname{Re}(m_{12}^2)\,\tan\phi(m_{12}^2) = v_1v_2\operatorname{Re}(\lambda_5)\,\tan\phi(\lambda_5)$$

Ensure CP violation (both phases cannot be removed simultaneously) by choosing:

 $\phi(\lambda_5) \neq 2\,\phi(m_{12}^2)$

• Mass spectrum and mixing: CP violation ~> neutral formerly CP-even (h,H) and CP-odd (A) states mix to mass eigenstates H_i (i = 1,2,3) with indefinite CP quantum number

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{v_1 + \rho_1 + i\eta_1}{\sqrt{2}} \end{pmatrix} \quad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{v_2 + \rho_2 + i\eta_2}{\sqrt{2}} \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} H_1 \\ H_2 \\ H_3 \end{pmatrix} = R \begin{pmatrix} \rho_1 \\ \rho_2 \\ \rho_3 \end{pmatrix}$$

 $\begin{array}{ll} \text{with} \qquad R = \begin{pmatrix} c_1 c_2 & s_1 c_2 & s_2 \\ -(c_1 s_2 s_3 + s_1 c_3) & c_1 c_3 - s_1 s_2 s_3 & c_2 s_3 \\ -c_1 s_2 c_3 + s_1 s_3 & -(c_1 s_3 + s_1 s_2 c_3) & c_2 c_3 \end{pmatrix} \quad \text{and} \quad m_{H_1} \leq m_{H_2} \leq m_{H_3} \\ & \quad \text{only two masses are} \\ & \quad \text{independent:} \\ m_{H_3}^2 = \frac{m_{H_1}^2 R_{13}(R_{12} \tan \beta - R_{11}) + m_{H_2}^2 R_{23}(R_{22} \tan \beta - R_{21})}{R_{33}(R_{31} - R_{32} \tan \beta)} \end{array}$

Charged Higgs sector is unchanged.

- C2HDM input parameters: $m_{H_i}, m_{H_j}, m_{H^{\pm}}, \text{Re}(m_{12}^2), v, \tan\beta, R_{23}, c_{H_iVV}^2, c_{H_itt}^2$, with $m_{H_i} \leq m_{H_j}$ and sign of R_{13} to lift degeneracy from squared couplings
- Allowed amount of CP violation: stringently constrained by EDM measurements

• Mass spectrum and mixing: CP violation ~> neutral formerly CP-even (h,H) and CP-odd (A) states mix to mass eigenstates H_i (i = 1,2,3) with indefinite CP quantum number

$$\begin{split} & \Phi_{1} = \begin{pmatrix} \phi & (H_{1}) & (\rho_{1}) \\ \frac{\psi_{1} + \rho}{v} & \text{3 neutral CP-mixed Higgs bosons: } H_{1}, H_{2}, H_{3}, \\ & \text{with } m_{H_{1}} \leq m_{H_{2}} \leq m_{H_{3}} \\ 2 \text{ charged Higgs bosons: } H^{+}, H^{-} & \leq m_{H_{2}} \leq m_{H_{3}} \\ -(c_{1}, c_{1}, c_{2}, c_{3} + s_{1}s_{3}) & -(c_{1}s_{3} + s_{1}s_{2}c_{3}) & c_{2}c_{3} \end{pmatrix} \\ & \text{with } R = \begin{pmatrix} -(c_{1}, c_{1}, c_{2}, c_{3} + s_{1}s_{3}) & -(c_{1}s_{3} + s_{1}s_{2}c_{3}) & c_{2}c_{3} \end{pmatrix} \\ & -\pi/2 < \alpha_{1} \leq \pi/2, & -\pi/2 < \alpha_{2} \leq \pi/2, & -\pi/2 < \alpha_{3} \leq \pi/2 \\ & \text{only two masses are independent:} \\ & m_{H_{3}}^{2} = \frac{m_{H_{1}}^{2}R_{13}(R_{12}\tan\beta - R_{11}) + m_{H_{2}}^{2}R_{23}(R_{22}\tan\beta - R_{21})}{R_{33}(R_{31} - R_{32}\tan\beta)} \end{split}$$

Charged Higgs sector is unchanged.

- C2HDM input parameters: $m_{H_i}, m_{H_j}, m_{H^{\pm}}, \text{Re}(m_{12}^2), v, \tan\beta, R_{23}, c_{H_iVV}^2, c_{H_itt}^2$, with $m_{H_i} \leq m_{H_j}$ and sign of R_{13} to lift degeneracy from squared couplings
- Allowed amount of CP violation: stringently constrained by EDM measurements

Interdependence between LHC Higgs Data and the Electron EDM

Combined fits from LHC run2&3 on Higgs data&searches, new EDM results, data from direct CP-violation searches in angular correlations of the τ 's in $h_{125} \rightarrow \tau \tau$, the bound on $m_{H^{\pm}}$ from $b \rightarrow s\gamma$ constrain possible amount of CP-violation: only in the LS case a sizable amount of CP-odd components, $|c^o| \approx |c^e|$, is still allowed, where CP violation occurs in the $h_{125}\tau\tau$ coupling. The amount is ultimately limited by the LHC measurements of $\alpha_{h_{125}\tau\tau}$

The dark red points obey the currently strongest limit on the eEDM $4.1 \times 10-30$ e.cm reported by JILA [60].

C2HDM Higgs Decay Widths

[Fontes,MM,Romão,Santos,Silva,Wittbrodt,'17]

• Fortran code C2HDM_HDECAY: partial decay widths and branching ratios in the CP-violating 2HDM including off-shell decays, loop-induced decays and state-of-the-art higher-order QCD correction

The Next-to-2HDM (N2HDM)

M.M. Mühlleitner, KIT

The Next-to-2HDM (N2HDM)

• The N2HDM: based on the CP-conserving 2HDM [Chen, Freid, Sher, 14] w/ a softly broken \mathbb{Z}_2 symmetry, extended by a real singlet field Φ_S

• Motivation:

- enlarged Higgs sector ~> rich phenomenology
- study effect of singlet admixture
- rich vacuum structure (possibility of strong first order phase transition)
- possible Dark Matter candidate

[Chen,Freid,Sher,'14] [MM,Sampaio,Santos,Wittbrodt,'16]

The Next-to-2HDM (N2HDM)

- The N2HDM: based on the CP-conserving 2HDM [Chen,Freid,Sher,'14] [MM,Sampaio,Santos,Wittbrodt,'16] w/ a softly broken \mathbb{Z}_2 symmetry, extended by a real singlet field Φ_S
- The tree-level potential:

$$V = m_{11}^{2} |\Phi_{1}|^{2} + m_{22}^{2} |\Phi_{2}|^{2} - m_{12}^{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{\lambda_{5}}{2} [(\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.] + \frac{1}{2} m_{S}^{2} \Phi_{S}^{2} + \frac{\lambda_{6}}{8} \Phi_{S}^{4} + \frac{\lambda_{7}}{2} (\Phi_{1}^{\dagger} \Phi_{1}) \Phi_{S}^{2} + \frac{\lambda_{8}}{2} (\Phi_{2}^{\dagger} \Phi_{2}) \Phi_{S}^{2} .$$

2HDM structure

invariant under two discrete symmetries:

 \mathbb{Z}_2 : $\Phi_1 \to \Phi_1$, $\Phi_2 \to -\Phi_2$, $\Phi_S \to \Phi_S$ (softly broken)

$$\mathbb{Z}_2': \quad \Phi_1 \to \Phi_1 , \quad \Phi_2 \to \Phi_2 , \quad \Phi_S \to -\Phi_S$$

• After EWSB:

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}}(v_1 + \rho_1 + i\eta_1) \end{pmatrix}, \quad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}}(v_2 + \rho_2 + i\eta_2) \end{pmatrix}, \quad \Phi_S = v_S + \rho_S$$

M.M. Mühlleitner, KIT
The Next-to-2HDM (N2HDM)

• Higgs spectrum and mixing angles: charged (H^{\pm}) and pseudoscalar (A) sector unchanged, three neutral scalar field ρ_1, ρ_2, ρ_s mix to Higgs mass eigenstates H_i (i = 1, 2, 3)

$$\begin{pmatrix} H_1 \\ H_2 \\ H_3 \end{pmatrix} = R \begin{pmatrix} \rho_1 \\ \rho_2 \\ \rho_S \end{pmatrix} \quad \text{with} \quad R = \begin{pmatrix} c_{\alpha_1}c_{\alpha_2} & s_{\alpha_1}c_{\alpha_2} & s_{\alpha_2} \\ -(c_{\alpha_1}s_{\alpha_2}s_{\alpha_3} + s_{\alpha_1}c_{\alpha_3}) & c_{\alpha_1}c_{\alpha_3} - s_{\alpha_1}s_{\alpha_2}s_{\alpha_3} & c_{\alpha_2}s_{\alpha_3} \\ -c_{\alpha_1}s_{\alpha_2}c_{\alpha_3} + s_{\alpha_1}s_{\alpha_3} & -(c_{\alpha_1}s_{\alpha_3} + s_{\alpha_1}s_{\alpha_2}c_{\alpha_3}) & c_{\alpha_2}c_{\alpha_3} \end{pmatrix}$$

and
$$m_{H_1} < m_{H_2} < m_{H_3}$$

- N2HDM input parameters: $m_{H_{1,2,3}}, m_A, m_{H^{\pm}}, m_{12}^2, \alpha_1, \alpha_2, \alpha_3, v, \tan \beta$
- FCNCs at tree-level: avoided by extending Z₂ symmetry to Yukawa sector ~> 4 N2HDM types analogously to the 2HDM

[MM,Sampaio,Santos,Wittbrodt,1612.01309]

		<i>u</i> -type	d-type	leptons
e.g. Yukawa coupling modification factors of the N2HDM H _i Higgs bosons w.r.t. the corresponding SM coupling	type I type II lepton-specific flipped	$\frac{\frac{R_{i2}}{s_{\beta}}}{\frac{R_{i2}}{s_{\beta}}}$ $\frac{\frac{R_{i2}}{s_{\beta}}}{\frac{R_{i2}}{s_{\beta}}}$ $\frac{R_{i2}}{s_{\beta}}$	$\frac{\frac{R_{i2}}{s_{\beta}}}{\frac{R_{i1}}{c_{\beta}}}$ $\frac{\frac{R_{i2}}{s_{\beta}}}{\frac{R_{i1}}{c_{\beta}}}$	$\frac{\frac{R_{i2}}{s_{\beta}}}{\frac{R_{i1}}{c_{\beta}}}$ $\frac{\frac{R_{i1}}{c_{\beta}}}{\frac{R_{i2}}{s_{\beta}}}$

The Next-to-2HDM (N2HDM)

• Higgs spectrum and mixing angles: charged (H^{\pm}) and pseudoscalar (A) sector unchanged, three neutral scalar field ρ_1, ρ_2, ρ_8 mix to Higgs mass eigenstates H_i (i = 1, 2, 3)

$$\begin{pmatrix} H_1 \\ H_2 \\ H_3 \end{pmatrix} = R \begin{pmatrix} \rho_1 \\ \rho_2 \\ \rho_S \end{pmatrix}$$
 3 neutral CP-mixed Higgs bosons: H_1, H_2, H_3 ,
with $m_{H_1} \le m_{H_2} \le m_{H_3}$
1 neutral CP-odd Higgs boson A
2 charged Higgs bosons: H^+, H^-
and $m_{H_1} < m_{H_2} < -\frac{\pi}{2} \le \alpha_{1,2,3} < \frac{\pi}{2}$

- N2HDM input parameters: $m_{H_{1,2,3}}, m_A, m_{H^{\pm}}, m_{12}^2, \alpha_1, \alpha_2, \alpha_3, v, \tan \beta$
- FCNCs at tree-level: avoided by extending Z₂ symmetry to Yukawa sector ~> 4 N2HDM types analogously to the 2HDM

[MM,Sampaio,Santos,Wittbrodt,1612.01309]

		<i>u</i> -type	<i>d</i> -type	leptons
e.g. Yukawa coupling modification factors of the N2HDM H _i Higgs bosons w.r.t. the corresponding SM coupling	type I type II lepton-specific flipped	$\frac{\frac{R_{i2}}{s_{\beta}}}{\frac{R_{i2}}{s_{\beta}}}$ $\frac{\frac{R_{i2}}{s_{\beta}}}{\frac{R_{i2}}{s_{\beta}}}$ $\frac{R_{i2}}{s_{\beta}}$	$\frac{\frac{R_{i2}}{s_{\beta}}}{\frac{R_{i1}}{c_{\beta}}}$ $\frac{\frac{R_{i2}}{s_{\beta}}}{\frac{R_{i1}}{c_{\beta}}}$	$\frac{\frac{R_{i2}}{s_{\beta}}}{\frac{R_{i1}}{c_{\beta}}}$ $\frac{\frac{R_{i1}}{c_{\beta}}}{\frac{R_{i1}}{c_{\beta}}}$ $\frac{R_{i2}}{s_{\beta}}$

Theory Constraints

- Theoretical constraints: tree-level perturbative unitarity, boundedness from below, global minimum; for details, cf. [MM, Sampaio, Santos, Wittbrodt, 1612.01309]
- More on the N2HDM potential minimum structure: [Ferreira, MM, Santos, Weiglein, Wittbrodt, 1905. 1023]

- First normal stationary point \mathcal{N} : both doublet w/ non-zero real VEV, singlet VEV=0 => \mathbb{Z}_2' preserved; singlet does not mix w/ remaining scalars ~> DM phase

$$\langle \Phi_1 \rangle_{\mathcal{N}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_1 \end{pmatrix}, \quad \langle \Phi_2 \rangle_{\mathcal{N}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_2 \end{pmatrix}, \quad \langle \Phi_S \rangle_{\mathcal{N}} = 0$$

- Second normal stationary point \mathcal{N}_s : both doublet and singlet w/ non-zero real VEV => \mathbb{Z}'_2 broken; singlet mixes w/ the remaining scalars

$$\langle \Phi_1 \rangle_{\mathcal{N}s} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v'_1 \end{pmatrix}, \quad \langle \Phi_2 \rangle_{\mathcal{N}s} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v'_2 \end{pmatrix}, \quad \langle \Phi_S \rangle_{\mathcal{N}s} = v'_S$$

- Analogously first and second charge-breaking, resp. CP-breaking stationary points
- Stationary point S: doublets do not acquire VEV, only singlet has non-zero VEV ~> EW gauge bosons and fermions massless ~> unphysical
- Further possibilities: existence of multiple minima of types \mathcal{N} , \mathcal{N} s or S, also panic vacuum!

Interplay vacuum Stability and Collider Observables

Possible vacua in the Next-to-Minimal 2-Higgs-Doublet Model (N2HDM)

[Ferreira,MM,Santos,Weiglein,Wittbrodt,1905.1023]

Note: Vacuum structure will be changed through higher-order correction!

Interplay vacuum Stability and Collider Observables

Possible vacua in the Next-to-Minimal 2-Higgs-Doublet Model (N2HDM)

[Ferreira,MM,Santos,Weiglein,Wittbrodt,1905.1023]

Note: Vacuum structure will be changed through higher-order correction!

The Dark Phases of the N2HDM

• Discrete symmetries: If both symmetries

 $\mathbb{Z}_2: \Phi_1 \to \Phi_1, \quad \Phi_2 \to -\Phi_2, \quad \Phi_S \to \Phi_S \qquad \mathbb{Z}'_2: \Phi_1 \to \Phi_1, \quad \Phi_2 \to \Phi_2, \quad \Phi_S \to -\Phi_S$

are exact ~> DM candidates; tree-level potential (no m_{12}^2):

$$\begin{split} V_{\text{Scalar}} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 + \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 \\ &+ \lambda_3 \Phi_1^{\dagger} \Phi_1 \Phi_2^{\dagger} \Phi_2 + \lambda_4 \Phi_1^{\dagger} \Phi_2 \Phi_2^{\dagger} \Phi_1 + \frac{\lambda_5}{2} \left[\left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \text{h.c.} \right] \\ &+ \frac{1}{2} m_s^2 \Phi_S^2 + \frac{\lambda_6}{8} \Phi_S^4 + \frac{\lambda_7}{2} \Phi_1^{\dagger} \Phi_1 \Phi_S^2 + \frac{\lambda_8}{2} \Phi_2^{\dagger} \Phi_2 \Phi_S^2 \,, \end{split}$$

Broken Phase (BP): doublets+singlet nonzero VeVs; $\mathbb{Z}_2, \mathbb{Z}'_2$ spont. broken ~> no DM candidates

Dark Singlet Phase (DSP): both doublets non-zero VeVs, singlet zero VEWV; \mathbb{Z}'_2 unbroken ~> 1 DM sector particle (H_D), 5 visible particles (H_1, H_2, A, H^{\pm}) **Dark Doublet Phase (DDP):** one doublet+singlet nonzero VeVs; \mathbb{Z}_2 exact, \mathbb{Z}'_2 spont. broken ~> 4 dark sector particles (A_D , H_D , H_D^{\pm}), 2 visible particles (H_1 , H_2)

Fully Dark Phase (FDP): only one doublet non-zero VeV; \mathbb{Z}_2 and \mathbb{Z}'_2 exact ~> visible SM Higgs (H_{SM}), dark particles ($H_D^D, H_D^S, A_D, H_D^{\pm}$)

Impact on DM Observables - Relic Density

[Engeln,Ferreira,MM,Santos,Wittbrodt,2004.05382]

Interplay with Collider Observables

 $\mu_{\gamma\gamma} = \frac{(\sigma(H) \mathsf{BR}(H \to \gamma\gamma))_{N2HDM}}{\sigma(H) \mathsf{BR}(H \to \gamma\gamma))_{SM}}$

[Engeln,Ferreira,MM,Santos,Wittbrodt,2004.05382]

Visible H^{\pm} always suppress $\mu_{\gamma\gamma}$ compared to the SM; H_D^{\pm} have more freedom in their couplings ~> enhance or suppress rate => $\mu_{\gamma\gamma}$ measurement could exclude BP, DSP

Dí-Higgs Beats Single Higgs

[Abouabid Arhrib Azevedo El Falaki Ferreira MM Santos 21]

Possible for models w/ singlet-dominated and/or h_d-like (small gluon fusion production <u>cxn</u>!) non-SM-like Higgs boson => NMSSM benchmark:

λ	κ	$A_{\lambda} \; [{ m GeV}]$	$A_{\kappa} [\text{GeV}]$	$\mu_{\mathrm{eff}} \; \mathrm{[GeV]}$	aneta
0.545	0.598	168	-739	258	2.255
$m_{H^{\pm}} \; [{ m GeV}]$	$M_1 \; [{ m GeV}]$	$M_2 \; [{ m GeV}]$	$M_3 [{ m TeV}]$	$A_t \; [{ m GeV}]$	$A_b \; [{ m GeV}]$
548	437.872	498.548	2	-1028	1083
$m_{ ilde{Q}_3}~[{ m GeV}]$	$m_{ ilde{t}_R} ~[{ m GeV}]$	$m_{\tilde{b}_R} ~[{ m GeV}]$	A_{τ} [GeV]	$m_{ ilde{L}_3}~[{ m GeV}]$	$m_{ ilde{ au}_R} ~[{ m GeV}]$
1729	1886	3000	-1679.21	3000	3000∞

	$m_{H_1} \; [{ m GeV}]$	$m_{H_2} [{ m GeV}]$	$m_{H_3} \; [{ m GeV}]$	$m_{A_1} \; [{ m GeV}]$	$m_{A_2} \; [{ m GeV}]$
	123.20	319	560	545	783
	$\Gamma_{H_1}^{ m tot} \ [m GeV]$	$\Gamma_{H_2}^{ m tot} \ [{ m GeV}]$	$\Gamma_{H_3}^{ m tot} \ [{ m GeV}]$	$\Gamma_{A_1}^{\rm tot} \; [{\rm GeV}]$	$\Gamma_{A_2}^{\rm tot} \; [{\rm GeV}]$
And the Physics	3.985×10^{-3}	0.010	4.207	6.399	6.913
singlet-like	h_{11}	h_{12}	h_{13}	h_{21}	h_{22}
H2	0.419	0.909	0.015	0.187	-0.102
	h_{23}	h_{31}	h_{32}	h_{33}	a_{11}
	0.977	0.889	-0.407	-0.212	0.908
	a_{21}	a_{13}	a_{23}		
	-0.104	0.114	0.994		
	·				

Dí-Higgs Beats Single Higgs

[Abouabid, Arhrib, Azevedo, El Falaki, Ferreira, MM, Santos, '21]

Possible for models w/ singlet-dominated (suppressed couplings to SM particles) and/or h_d-like (suppressed direct production) non-SM-like Higgs boson => NMSSM benchmark:

H₂ is singlet-like: dominant decay channel into A₁ A₁

Single Higgs Production (4b final state) $\sigma^{\text{NNLO}}(H_2)_{4b} = \sigma^{\text{NNLO}}(H_2) \times \text{BR}(H_2 \to A_1A_1) \times \text{BR}(A_1 \to b\bar{b})^2$ $= 13.54 \times 0.887 \times 0.704^2 \text{ fb} = 5.95 \text{ fb}.$

 $\begin{array}{l} \mbox{Di-Higgs Production (6b final state)} \\ \\ \sigma^{\rm NLO}(H_1H_2) = 111 \ {\rm fb} & {\rm BR}(H_1 \rightarrow b\bar{b}) = 0.539 \\ \\ \\ \sigma^{\rm NLO}(H_1H_2) \times {\rm BR}(H_1 \rightarrow b\bar{b}) \times {\rm BR}(H_2 \rightarrow A_1A_1) = 53 \ {\rm fb} \\ \\ \\ \\ \sigma^{\rm NLO}(H_1H_2)_{6b} = 53 \times 0.704^2 \ {\rm fb} = 26 \ {\rm fb} \end{array}$

Comparison with EFT

• Effective Lagrangian: $\Delta \mathcal{L}_{\text{non-lin}} \supset -m_t t \bar{t} \left(c_t \frac{h}{v} + c_{tt} \frac{h^2}{2v^2} \right) - c_3 \frac{1}{6} \left(\frac{3M_h^2}{v} \right) h^3$

c₃: trilinear coupling modification; c_t : top-Yukawa coupling modification; c_{tt} : effective two-Higgs-two-fermion coupling no c_q , c_{qq} : no new heavy colored BSM particles assumed

* Matching relations of our specific BSM models:

Higgs-top Yukawa coupling	:			$g_t^{H_{ ext{SM}}}(lpha_i,eta)$	\rightarrow	c_t
trilinear Higgs coupling	:		<u>g</u>	$\frac{\frac{H_{\rm SM}H_{\rm SM}H_{\rm SM}(p_i)}{3}}{3M_{H_{\rm SM}}^2/v}$	\rightarrow	c_3
two-Higgs-two-top quark coupling	:	$\sum_{k=1}^{k_{\max}} \left(\right)$	$\left(\frac{-v}{m_{H_k}^2}\right)$	$g_3^{H_k H_{\rm SM} H_{\rm SM}}(p_i) g_t^{H_k}(\alpha_i,\beta)$	\rightarrow	c_{tt}

g lle

موور _و

2HDM versus EFT

[Abouabid, Arhrib, Azevedo, El Falaki, Ferreira, MM, Santos, 21]

+R2HDM T2 sample parameter point:

$m_{H_1} \; [\text{GeV}]$	$m_{H_2} \; [\text{GeV}]$	$m_A \; [\text{GeV}]$	$m_{H^{\pm}} \; [\text{GeV}]$	α	aneta	$m_{12}^2 \; [{ m GeV^2}]$
125.09	1131	1082	1067	-0.924	0.820	552749

+ corresponding EFT values:

 $g_t^{H_2} = -1.126$

$$c_3 = 0.782, c_t = 0.951, c_{tt} = -0.122$$

*goodness of approximation?:

$m_{H_2} \; [\text{GeV}]$	Γ_{H_2} [GeV]	c_{tt}	$g_3^{H_2H_1H_1}$ [GeV]	$\sigma_{ m R2HDM}^{ m w/res}$ [fb]	$\sigma_{\mathrm{SMEFT}}^{c_{tt} \neq 0}$ [fb]	ratio
1131	78.80	-0.1222	-504.52	30.5	26.1	86%
1200	89.74	-0.1031	-479.29	27.7	24.8	90%
1500	470.2	-4.85310^{-2}	-352.42	21.8	21.4	98%

+ Remark:

$$\sigma_{\text{R2HDM}}^{\text{w/o res}} = 18.6 \text{ fb} \text{ and } \sigma_{\text{SMEFT}}^{c_{tt}=0} = 18.6 \text{ fb}$$

N2HDM Versus EFT

[Abouabid, Arhrib, Azevedo, El Falaki, Ferreira, MM, Santos, 21]

+N2HDM T1 sample parameter point:

$m_{H_1} \; [\text{GeV}]$	$m_{H_2} \; [\text{GeV}]$	$m_{H_3} \; [\text{GeV}]$	$m_A \; [\text{GeV}]$	$m_{H^{\pm}} \; [\text{GeV}]$	aneta
125.09	269	582	390	380	4.190
α_1	α_2	$lpha_3$	$v_s \; [\text{GeV}]$	$\operatorname{Re}(m_{12}^2)$ [GeV ²]	
1.432	-0.109	0.535	1250	28112	

 $g_t^{H_2} = 0.179$ and $g_t^{H_3} = 2.337 \times 10^{-2}$

+ corresponding EFT values:

$$c_3 = 0.877, c_t = 1.012, c_{tt} = 4.127 \times 10^{-2}$$

+ goodness of approximation?: (mH3 kept fixed)

m_{H_2}	Γ_{H_2}	$c_{tt}^{H_2}$	c_{tt}	$g_3^{H_2H_1H_1}$	$\sigma_{ m N2HDM}^{ m w/\ res}$ [fb]	$\sigma_{\mathrm{SMEFT}}^{c_{tt} \neq 0}$ [fb]	ratio
269	0.075	4.410×10^{-2}	4.127×10^{-2}	-72.42	183.70	20.56	11%
300	0.083	3.170×10^{-2}	2.877×10^{-2}	-64.80	162.80	21.28	13%
400	0.177	9.544×10^{-3}	6.721×10^{-3}	-34.68	43.33	22.60	52%
420	0.229	6.895×10^{-3}	4.063×10^{-3}	-27.62	31.70	22.76	72%
440	0.284	4.600×10^{-3}	1.767×10^{-3}	-20.22	26.26	22.90	87%
450	0.315	3.564×10^{-3}	7.323×10^{-4}	-16.39	24.84	22.96	92%
500	2.567	-7.132×10^{-4}	-3.545×10^{-3}	4.05	23.56	23.22	99%