

Institute for Theoretical Particle Physics and Cosmology

Emulation of Cosmic-Ray Antideuteron Fluxes from Dark Matter Annihilation

Based on ArXiv: 2406.18642

Lena Rathmann

In collaboration with Jan Heisig, Michael Korsmeier, Michael Krämer and Kathrin Nippel **Collaborative Research Center TRR 257**

Particle Physics Phenomenology after the Higgs Discovery

Young Scientist Meeting 2024

25.09.2024

YSM 2024

YSM 2024

YSM 2024

Gravitational lensing

Galaxy rotation curves

YSM 2024

Gravitational lensing

Galaxy rotation curves

YSM 2024

Gravitational lensing

Large scale structures

YSM 2024

Gravitational lensing

Large scale structures

Antideuterons from DM annihilation - L. Rathmann

al

YSM 2024

- High energy colliders could produce DM
- Look for anomalies, missing energy
- Use for example results from ATLAS, CMS and LHCb

- DM particle scatters off target nuclei
- Observe
 - recoil energy spectrum
 - recoil direction
 - change of signal with time

- DM annihilates or decays into SM particles in galaxy
- Detect resulting with AMS-02, Fermi LAT, H.E.S.S., ...
- Look for excess over background (can be difficult) \rightarrow use antideuterons

cosmic rays on Earth

- Antimatter can be produced in dark matter annihilations
- Background from interactions of cosmic rays negligible at low energies for antinuclei but not for antiparticles
- New GAPS experiment & AMS-02 can detect low energy antinuclei

Why Antideuterons?

Where do Antideuterons come from?

Production

Production: Coalescence Mechanism

• Coalescence momentum p_c , determined from experiment

YSM 2024

Fornengo+ [1306.4171]

Production: Coalescence Mechanism

- Coalescence momentum p_c , determined from experiment
- Match number of antideuterons from simulated hadronic Z-decays to amount measured by LEP
- Spatial separation smaller than 2 fm

Antideuterons from $\bar{\Lambda}_b$ Decay

• $m_{\bar{\Lambda}_{h}} = 5.6 \text{ GeV} \rightarrow \text{decays into}$ particles with small relative momenta $\rightarrow boosts \bar{d}$ production

Winkler, Linden [2006.16251]

Antideuterons from $\overline{\Lambda}_h$ Decay

Displaced vertex

- $m_{\bar{\Lambda}_{h}} = 5.6 \text{ GeV} \rightarrow \text{decays into}$ particles with small relative momenta \rightarrow boosts *d* production
- Rescale $\bar{\Lambda}_b$ production in PYTHIA to match measurement of transition ratio $f(b \rightarrow \Lambda_h)$ with extra parameter $r_{\Lambda_h} \approx 3$

Galactic Propagation

Propagation

Solar Modulation

 Use diffusion break cosmic ray (CR) propagation model in Balan et al. [2303.07362] for differential particle number density ψ

YSM 2024

$$\frac{\partial}{p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left[\frac{\mathrm{d}p}{\mathrm{d}t} \psi - \frac{p}{3} (\overrightarrow{\nabla} \cdot \overrightarrow{V}) \psi \right] - \frac{1}{\tau_f} \psi - \frac{1}{\tau_$$

 Use diffusion break cosmic ray (CR) propagation model in Balan et al. [2303.07362] for differential particle number density ψ

 $\frac{\partial \psi(\vec{x}, p, t)}{\partial t} = q(\vec{x}, p) + \vec{\nabla} \cdot (D_{xx} \cdot \vec{\nabla} \psi - \vec{V} \psi) + \frac{\partial}{\partial t}$

Source term for primary (from DM), secondary (from CRs) antideuterons

$$\frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left[\frac{\mathrm{d}p}{\mathrm{d}t} \psi - \frac{p}{3} (\overrightarrow{\nabla} \cdot \overrightarrow{V}) \psi \right] - \frac{1}{\tau_f} \psi - \frac{1}{\tau_f} \psi$$

 Use diffusion break cosmic ray (CR) propagation model in Balan et al. [2303.07362] for differential particle number density ψ

 $\frac{\partial \psi(\vec{x}, p, t)}{\partial t} = q(\vec{x}, p) + \overrightarrow{\nabla} \cdot (D_{xx} \cdot \overrightarrow{\nabla} \psi - \overrightarrow{V} \psi) + \frac{\partial \psi}{\partial t}$

- Spatial diffusion and convection
- Diffusion coefficient modeled as double-broken power law
- Constant convection velocity $\vec{V}_c = v_{0,c} \operatorname{sign}(z) \vec{e}_z$ $D_0 \ddagger \delta_1$

$$\frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left[\frac{\mathrm{d}p}{\mathrm{d}t} \psi - \frac{p}{3} (\overrightarrow{\nabla} \cdot \overrightarrow{V}) \psi \right] - \frac{1}{\tau_f} \psi - \frac{1}{$$

 Use diffusion break cosmic ray (CR) propagation model in Balan et al. [2303.07362] for differential particle number density ψ

 $\frac{\partial \psi(\vec{x}, p, t)}{\partial t} = q(\vec{x}, p) + \vec{\nabla} \cdot (D_{xx} \cdot \vec{\nabla} \psi - \vec{V} \psi) + \frac{\partial}{\partial t}$

- in momentum space

$$\frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left[\frac{\mathrm{d}p}{\mathrm{d}t} \psi - \frac{p}{3} (\overrightarrow{\nabla} \cdot \overrightarrow{V}) \psi \right] - \frac{1}{\tau_f} \psi - \frac{1}{$$

Reacceleration by scattering off magnetic Alfvén waves modeled by diffusion

• Depends on Alfvén velocity $v_{\rm A}$ and spatial diffusion coefficient: $D_{pp} \sim \frac{v_{\rm A}}{D_{xx}}$

 Use diffusion break cosmic ray (CR) propagation model in Balan et al. [2303.07362] for differential particle number density ψ

- Continuous energy losses from
 - ionization and Coulomb collisions
- Catastrophic energy losses by fragmentation and decay

Antideuterons from DM annihilation - L. Rathmann

12

Solar Modulation

- Antideuterons are deflected and decelerated by solar winds \rightarrow top-of-atmosphere (TOA) flux smaller than local interstellar (LIS) flux
- Model impact with force-field approximation:

$$\phi_{\text{TOA}}(E_{\text{TOA}}) = \frac{E_{\text{TOA}}^2 - m^2}{E_{\text{LIS}}^2 - m^2} \phi_{\text{LIS}}(E_{\text{LIS}})$$
$$E_{\text{TOA}} = E_{\text{LIS}} - e |Z| \varphi$$

• Solar modulation potential φ depends on solar activity

 $(E_{\rm LIS}),$

Speed-up Antideuteron Simulation

YSM 2024

Antideuterons from DM annihilation - L. Rathmann

14

Speed-up Antideuteron Simulation

YSM 2024

Antideuterons from DM annihilation - L. Rathmann

14

Neural Network

the same layer \rightarrow can account for correlations between energy bins

Recurrent Neural Networks (RNN) use output of particular layer as input of

Neural Network

- the same layer \rightarrow can account for correlations between energy bins
- Similar to Kahlhoefer et al. [2107.12395] and Balan et al. [2303.07362]
- Relative error of network $\mathcal{O}(10^{-2})$

JNIVERSIT

Particle Physics

Recurrent Neural Networks (RNN) use output of particular layer as input of

Network available in

https://github.com/ kathrinnp/DarkRayNet

Antideuterons from DM annihilation - L. Rathmann

15

Prediction of Sensitivity Factor

- posterior of p, \bar{p} and He fit
- Apply force-field approximation to account for solar modulation

YSM 2024

• Generate fluxes for set of propagation parameters $\{\theta_{\text{prop},i}\}$ sampled from

Prediction of Sensitivity Factor

- posterior of p, \bar{p} and He fit
- Apply force-field approximation to account for solar modulation
- Marginalize over $\{\theta_{\text{prop},i}\}$:

$$\langle \Phi_{\bar{d}} \rangle = \frac{\sum_{i} \Phi_{\bar{d},i} \frac{\mathscr{L}_{\mathrm{DM}}(\theta_{\mathrm{prop},i}, x_{\mathrm{DM}})}{\mathscr{L}(\theta_{\mathrm{prop},i})}}{\sum_{i} \frac{\mathscr{L}_{\mathrm{DM}}(\theta_{\mathrm{prop},i}, x_{\mathrm{DM}})}{\mathscr{L}(\theta_{\mathrm{prop},i})} }$$

• Calculate sensitivity factor:

 $\langle \Phi_{\bar{d}} \rangle$

exp.

• Generate fluxes for set of propagation parameters $\{\theta_{\text{prop},i}\}$ sampled from

Sensitivity Annihilation into *bb*

 \blacksquare Assuming \bar{p} limit, sensitivity only to small DM masses

GAPS independent test to AMS-02

YSM 2024

nly to small DM masses /IS-02

 \bar{p} limit from Balan et al. [2303.07362]

Conclusion

- Antideuterons are great for indirect detection because of negligible background
- Predicted fluxes of antideuterons on Earth for varying DM models including uncertainties from antideuteron production
- Calculating fluxes is slow \rightarrow trained Neural Network DARKRAYNET, available on GitHub, can be used for arbitrary DM models
- Obtained sensitivity factor for AMS-02 and GAPS
- AMS-02 and GAPS only sensitive to low DM masses if DM annihilates into $b\bar{b}$

https://github.com/ kathrinnp/DarkRayNet

Conclusion

- Antideuterons are great for indirect detection because of negligible background
- Predicted fluxes of antideuterons on Earth for varying DM models including uncertainties from antideuteron production
- Calculating fluxes is slow \rightarrow trained Neural Network DARKRAYNET, available on GitHub, can be used for arbitrary DM models
- Obtained sensitivity factor for AMS-02 and GAPS
- AMS-02 and GAPS only sensitive to low DM masses if DM annihilates into $b\bar{b}$

https://github.com/ kathrinnp/DarkRayNet

Thank you!

Backup Slides

YSM 2024

1	Q
- 1	\mathbf{J}

Antideuteron Injection Spectra

- Generated spectra for $m_{\rm DM} = 100 \, {\rm GeV} \, {\rm using}$ MADDM and PYTHIA 8.2
- Include \bar{d} produced at initial vertex and through Λ_b decay
- Compare to PPPC4DMID [1012.4515] (used PYTHIA 8.1)

 $\mathrm{d}N/\mathrm{d}\log_{10}(x)$

Network Architecture

YSM 2024

• Relative difference of most transformed fluxes at most 6×10^{-4}

• Translates to relative error of $\mathcal{O}(10^{-2})$ in the actual flux

Prediction of Sensitivity Factor

YSM 2024

23

Experimental Sensitivities

Experiment	Energy range [GeV/nuc]		
GAPS	[0.05, 0.25]		
AMS-02	[0.2, 0.8] and $[2.2, 4.2]$		

YSM 2024

$$\begin{array}{l} \Phi_{\mathrm{sens},E_{\mathrm{exp}}} \\ [\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}\,(\mathrm{GeV/nuc})^{-1}] \\ 2 \times 10^{-6} \quad \mathrm{GAPS} \ \mathrm{Collaboration} \ [1506.02] \\ 4.5 \times 10^{-7} \ \mathrm{Choutko}, \ \mathrm{Giovacchini} \ [\mathrm{ICRC} \ 2] \end{array}$$

Antideuterons from DM annihilation - L. Rathmann

2513] 2008]

Propagation Parameters & Priors

_

Parameters

YSM 2024

Priors	DIFF.BRK	INJ.BRK	
1.2 - 2.1			
1.2-2.1			
2.1 - 2.6			
2.1 - 2.6			
1.0-20			
0.1 - 0.7			
0.5 - 10.0			
1.0-0.5			
0.3-0.7			
0.2 - 0.0			
1.0 - 20.0			
0.1 - 0.9			
100-500			
0 - 30			
0 - 60			

25

Singlet Scalar Higgs Portal

- SM extended by gauge-singlet real scalar
- Portal coupling to Higgs fixed to explain measured relic abundance

YSM 2024

Antideuterons from DM annihilation - L. Rathmann

26

SSHP Sensitivity AMS-02

YSM 2024

_		1		
I				1
	_			

SSHP Sensitivity GAPS

YSM 2024

YSM 2024

INJ.BRK

Limits for DM annihilation into $b\bar{b}$, from Balan et al. [2303.07362]

29