

Collaborative Research Center TRR 257

Particle Physics Phenomenology after the Higgs Discovery

Choosing the right features for weak supervision

Marie Hein

In collaboration with Joep Geuskens, Michael Krämer, Lukas Lang, Radha Mastandrea & Alexander Mück

CRC Young Scientists Meeting 2024

Classification Problem

• Goal: To achieve a better signal to background ratio

Classification Problem

- Goal: To achieve a better signal to background ratio
- Ansatz: Perform classification task

Classification Problem

- Goal: To achieve a better signal to background ratio
- Ansatz: Perform classification task
- Problem: Labels are not available on real data

Weakly Supervised Classification

"Classification without labels: Learning from mixed samples in high energy physics" [1709.02949], E. Metodiev, B. Nachman, J. Thaler

- Goal: To achieve a better signal to background ratio
- Ansatz: Perform classification task
- Problem: Labels are not available on real data
- Solution: Classify between mixed classes
 Fundamentally, both problems are equivalent

RWITHAACHEN UNIVERSITY

Recreated from [2109.00546]

RVNTHAACHEN UNIVERSITY

Recreated from [2109.00546]

Recreated from [2109.00546]

RWITHAACHEN UNIVERSITY

Recreated from [2109.00546]

Institute for Theoretical Particle Physics and Cosmology

The Dataset & Features

LHCO R&D dataset

"The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics" [2101.08320], G. Kasieczka, B. Nachman, D. Shih et. al.

- Benchmark dataset for anomaly detection
- QCD dijet background
- Signal

LHCO R&D dataset

"The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics" [2101.08320], G. Kasieczka, B. Nachman, D. Shih et. al.

- Benchmark dataset for anomaly detection
- QCD dijet background
- Signal

- 1. Low level features: use particle four-momenta in jet-separated LorentzNet
 - Very model agnostic
- 2. High level Features: derive observables from low-level features
 - Less model agnostic
 - Easier classification task (more closely related to problem to be solved)
 - a. N-Subjettiness
 - b. Energy Flow Polynomials

"Identifying Boosted Objects with N-subjettiness" [1011.2268], J. Thaler, K. Van Tilburg "Maximizing Boosted Top Identification by Minimizing N-subjettiness" [1108.2701], J.Thaler, K. Van Tilburg

• Cluster into *N* subjets to obtain Sum over all particles $\tau_{N}^{\beta} = \frac{1}{d_{0}} \sum_{i}^{N} p_{T,i} \min_{J} (\Delta R_{Ji})^{\beta}$ Angular distance measure $\Delta R_{Ji} = \sqrt{(\Delta y_{Ji})^{2} + (\Delta \varphi_{Ji})^{2}}$

Normalization

• "Momentum-weighted sum of angular distance of all particles to closest subjet"

Subjet candidates

RWITHAACHEN UNIVERSITY

Signal

Subjettiness-based feature sets

- 1. Baseline feature set
 - Jet masses m_{J1} , Δm_J
 - 21-Subjettiness ratio $\tau_{21,J1}, \tau_{21,J2}$
- 2. Extended feature set
 - Jet masses m_{J1} , Δm_J
 - Use 54 different subjettiness features (varying N and β)

50000

RWIHAAC

Energy Flow Polynomials

"Energy flow polynomials: A complete linear basis for jet substructure" [1712.07124], P. Komiske, E. Metodiev, J. Thaler "Energy Flow Networks: Deep Sets for Particle Jets" [1810.05165], P. Komiske, E. Metodiev, J. Thaler

• Complete linear basis of jet substructure observables

EFP-Multigraph Correspondence

EFP-Multigraph Correspondence

EFP-Multigraph Correspondence

UNIVERSITY

EFP-based feature set

1. EFP feature set

- Jet masses m_{J1} , Δm_J
- 490 EFPs per jet (up to 7 edges)

Feature sets

- 1. Low level features
- 2. High level features
 - a. Baseline feature set (Subjettiness)
 - b. Extended feature set (Subjettiness)
 - c. EFP feature set

- \rightarrow 4 features
- \rightarrow 56 features
- \rightarrow 982 features

Institute for Theoretical Particle Physics and Cosmology

Performance Measure

1D scan

1D scan

1D scan

Institute for Theoretical Particle Physics and Cosmology

Results

27/09/2024

"Tree-Based Algorithms for Weakly Supervised Anomaly Detection" [2309.13111], T. Finke, **MH** et. al. "Identifying Anomalous Events Using Low-Level LHC Data", Master Thesis of Joep Geuskens (2023) Master Thesis of Lukas Lang (2024)

RWITHAAC

"Tree-Based Algorithms for Weakly Supervised Anomaly Detection" [2309.13111], T. Finke, **MH** et. al. "Identifying Anomalous Events Using Low-Level LHC Data", Master Thesis of Joep Geuskens (2023) Master Thesis of Lukas Lang (2024)

RWITHAACH

"Tree-Based Algorithms for Weakly Supervised Anomaly Detection" [2309.13111], T. Finke, **MH** et. al. "Identifying Anomalous Events Using Low-Level LHC Data", Master Thesis of Joep Geuskens (2023) Master Thesis of Lukas Lang (2024)

RWTHAACH LINIVERS

"Tree-Based Algorithms for Weakly Supervised Anomaly Detection" [2309.13111], T. Finke, **MH** et. al. "Identifying Anomalous Events Using Low-Level LHC Data", Master Thesis of Joep Geuskens (2023) Master Thesis of Lukas Lang (2024)

RWTHAACH LINIVERS

Conclusion

R'NTHAACHEN UNIVERSITY

Summary

- EFPs are useful for anomaly detection
- By choosing the right observables, we can...
 →be more model agnostic
 →be sensitive to lower signal cross sections

Outlook

- Understand why EFPs work so well
 →Currently using interpretable ML methods
- Test EFPs for other signal types
 →Currently working on semi-visible jet
- Test EFPs in more realistic setup