

Towards HH at NNLO QCD: the n_h^2 Contribution

Marco Vitti (Karlsruhe Institute of Technology, TTP and IAP) Young Scientists Meeting of CRC TRR257, Karlsruhe, 26 Sep 2024 Work in collaboration with J. Davies, K. Schönwald, M. Steinhauser

Higgs Physics at the LHC

Does the discovered Higgs boson behave as the SM predicts?

What we still don't know after Run2

- Yukawa couplings of first and second generation
- Higgs total decay width
- Shape of the Higgs potential

$$V(h) = \frac{m_H^2}{2}h^2 + \lambda_3 vh^3 + \frac{\lambda_4}{4}h^4$$
$$\lambda_4^{\text{SM}} = \lambda_3^{\text{SM}} = \lambda = m_H^2/(2v^2)$$

HH Production @LHC

Best chance to measure λ_3

LO computed in [Glover, van der Bij ('88); Plehn et al. (96)]

- In the SM, destructive interference between triangle (signal) and box (background)
- Accurate predictions required for both

[Di Micco et al. - 1910.00012]

NLO QCD corrections for HH

Full top-mass dependence obtained via

Numerical evaluation

[Borowka et al. - 1604.06447, 1608.04798; Baglio et al. - 1811.05692]

Analytic approximations

Large Mass Expansion [Dawson, Dittmaier, Spira '98]

pT expansion [Bonciani et al. - 1806.11564]

High-Energy expansion [Davies et al. - 1811.05489]

Small-mass expansion [Wang et al. - 2010.15649]

Full phase space covered in [Bellafronte et al. - 2202.12157; Davies et al. - 2302.01356]

Multi-scale $(s, t, m_{H,}m_{t})$ two-loop integrals No exact analytic results available

Theoretical Uncertainties at NLO QCD

Scale uncertainties reduced to O(15%)

- Large uncertainty due to choice of renormalization scheme and scale for the top mass
- NNLO would still be desirable

[Baglio et al. - 2008.11626]

Analytic approximations for NNLO QCD

Exploit hierarchies of masses/kinematic invariants

Pros: simplified integral structures; can change parameters easily

Cons: proliferation of integrals; restricted to specific phase-space regions

$m_t^{} \! ightarrow \infty$ limit (N3LO)

[De Florian, Mazzitelli 1305.5206 and 1309.6594; . Grigo, Melnikov and Steinhauser – 1408.2422; Chen et al. - 1909.06808 and 1912.13001;]

Finite $1/m_t$ effects

[Grigo, Hoff, Steinhauser - 1508.00909; Davies, Steinhauser - 1909.01361; Davies et al. 2110.03697]

Forward Expansions

D pT expansion $m_H^2, p_T^2 \ll m_t^2, \hat{s}$

[Bonciani, Degrassi, Giardino, Gröber - 1806.11564]

• $t \rightarrow 0$ expansion $m_H^2, \hat{t} \ll m_t^2, \hat{s}$

[Davies, Mishima, Schönwald, Steinhauser - 2302.01356]

2) Focus on the p3-dependent part; explicit transverse momentum (Sudakov)

$$p_{3}^{\mu} = -p_{1}^{\mu} - \frac{t'}{s'}(p_{1} - p_{2})^{\mu} + r_{\perp}^{\mu} \qquad \qquad \frac{t'}{s'} = -\frac{1}{2} \left\{ 1 - \sqrt{1 - 2\frac{p_{T}^{2} + m_{H}^{2}}{s'}} \right\}$$

$$p_{3}^{\mu} = -p_{T}^{\mu} \qquad \qquad r_{\perp}^{2} = -p_{T}^{2}$$

$$r_{\perp}^{2} = -p_{T}^{2}$$

$$r_{\perp}^{2} = -p_{T}^{2}$$
Taylor expansion $\rightarrow \int d^{D}q \ \frac{(q^{2})^{n_{1}}(q \cdot p_{1})^{n'_{2}}(q \cdot p_{2})^{n'_{3}}(q \cdot r_{\perp})^{n'_{4}}}{(q^{2} - m_{T}^{2})^{l_{1}}[(q + p_{2})^{2} - m_{T}^{2}][(q - p_{1})^{2} - m_{T}^{2}]}$

4) Tensor + IBP Reduction \rightarrow Dependence on r_{\perp} removed

3

2) Focus on the p3-dependent part; explicit transverse momentum (Sudakov)

$$p_{3}^{\mu} = -p_{1}^{\mu} - \frac{t'}{s'}(p_{1} - p_{2})^{\mu} + r_{\perp}^{\mu} \qquad \qquad \frac{t'}{s'} = -\frac{1}{2} \left\{ 1 - \sqrt{1 - 2\frac{p_{T}^{2} + m_{H}^{2}}{s'}} \right\}$$
3) In the forward limit $p_{3}^{\mu} \simeq -p_{1}^{\mu} \qquad \qquad r_{\perp}^{2} = -p_{T}^{2}$
Taylor expansion $\rightarrow \int d^{D}q \ \frac{(q^{2})^{n_{1}}(q \cdot p_{1})^{n'_{2}}(q \cdot p_{2})^{n'_{3}}(q \cdot r_{\perp})^{n'_{4}}}{(q^{2} - m_{t}^{2})^{l_{1}}[(q + p_{2})^{2} - m_{t}^{2}][(q - p_{1})^{2} - m_{t}^{2}]}$
 $I(\hat{s}, p_{T}^{2}, m_{H}^{2}, m_{t}^{2}) \rightarrow \text{MI}(\hat{s}/mt^{2}) \quad \text{single-scale integrals}$

Can we use the forward expansion for higher orders?

Classes of three loop diagrams

Can we use the forward expansion for higher orders?

Classes of three loop diagrams

Can we use the forward expansion for higher orders?

Classes of three loop diagrams

Can we use the forward expansion for higher orders?

Classes of three loop diagrams

Start by studying the 1PR piece

1PR Contribution to $gg \rightarrow HH @$ **3 Loops**

[Davies, Schönwald, Steinhauser, MV - 2405.20372]

$$\mathcal{M}^{ab} = \varepsilon_{1,\mu}\varepsilon_{2,\nu}\mathcal{M}^{\mu\nu,ab} = \varepsilon_{1,\mu}\varepsilon_{2,\nu}\delta^{ab}X_0s\left(F_1A_1^{\mu\nu} + F_2A_2^{\mu\nu}\right)$$

Goal: compute
$$F_1^{(3\ell, 1PR)} = F_2^{(3\ell, 1PR)}$$

Approach: construct the $gg \rightarrow HH$ form factors from the 1PI gg*H subamplitudes

 $\mathcal{V}^{\alpha\beta}(q_s, q_2) = F_a \ g^{\alpha\beta}(q_s \cdot q_2) + F_b \ q_s^{\alpha} q_2^{\beta} + F_c \ q_2^{\alpha} q_s^{\beta} + F_d \ q_s^{\alpha} q_s^{\beta} + F_e \ q_2^{\alpha} q_2^{\beta}$

Outline of Calculation

1. Generation of diagrams with qgraf [Nogueira, '93]

- 2. Manipulation with tapir [Gerlach, Herren, Lang 2201.05618], q2e/exp [Harlander, Seidensticker Steinhauser – '97], FORM [Ruijl, Ueda, Vermaseren - 1707.06453]
- 3. IBP reduction (KIRA [Klappert, Lange, Maierhöfer, Usovitsch 2008.06494])
- 4. Perform asymptotic expansions in two limits

 $m_H^2 \ll q_s^2, m_t^2$

Same MIs from $t \rightarrow 0$ expansion at NLO Evaluated using "expand and match" approach

[Fael, Lange, Schönwald, Steinhauser – 2106.05296; 2202.05276]

Results expressed in terms of HPLs

 $q_s^2 \ll m_H^2, m_t^2$

gg*H Form Factors

A Taylor expansion of the two-loop integrals is not possible due to diagrams where the off-shell gluon couples to massless internal lines

Three topologies require an asymptotic expansion

gg*H Form Factors

 $\mathcal{V}^{\alpha\beta}(q_s, q_2) = F_a g^{\alpha\beta}(q_s \cdot q_2) + F_b q_s^{\alpha} q_2^{\beta} + F_c q_2^{\alpha} q_s^{\beta} + F_d q_s^{\alpha} q_s^{\beta} + F_e q_2^{\alpha} q_2^{\beta}$

 \blacksquare Use expanded MIs but keep coefficients exact ($m_{H}
ightarrow 0\,$)

Results checked with AMFlow [Liu, Ma - 2201.11669]

$gg \rightarrow HH$ Form Factors

Agreement with LME result of [Davies, Steinhauser - 1909.01361]

Conclusions

- Including NNLO QCD effects in $gg \rightarrow HH$ would allow full control[®] over scale and top-mass-scheme uncertainties
- An expansion in the forward-scattering limit is a promising way to obtain fast and flexible results and a wide coverage of the phase space
- At three loops, asymptotic expansions are necessary to account for the n_h^2 contribution, already in the reducible piece

Outlook

- Computation of the 1PI n_h^2 contribution (work in progress)
- Combination of all virtual corrections for complete account of NNLO effects
- Extend application to other *gg*-initiated $2 \rightarrow 2$ processes

Thank you for your attention

Backup

$gg \rightarrow ZH @ NLO QCD$

Inclusive cross section $\sqrt{s} = 13 \text{TeV}$ $\mu_r = \mu_f = M_{ZH}/2$

					· · · · · · · · · · · · · · · · · · ·
Top-mass scheme	LO [fb]	$\sigma_{LO}/\sigma_{LO}^{OS}$	NLO [fb]	$\sigma_{NLO}/\sigma_{NLO}^{OS}$	$K = \sigma_{NLO} / \sigma_{LO}$
On-Shell	$64.01^{+27.2\%}_{-20.3\%}$		$118.6^{+16.7\%}_{-14.1\%}$		1.85
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/4$	$59.40^{+27.1\%}_{-20.2\%}$	0.928	$113.3^{+17.4\%}_{-14.5\%}$	0.955	1.91
$\overline{\mathrm{MS}}, \mu_t = m_t^{\overline{\mathrm{MS}}}(m_t^{\overline{\mathrm{MS}}})$	$57.95^{+26.9\%}_{-20.1\%}$	0.905	$111.7^{+17.7\%}_{-14.6\%}$	0.942	1.93
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/2$	$54.22^{+26.8\%}_{-20.0\%}$	0.847	$107.9^{+18.4\%}_{-15.0\%}$	0.910	1.99
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}$	$49.23^{+26.6\%}_{-19.9\%}$	0.769	$103.3^{+19.6\%}_{-15.6\%}$	0.871	2.10

NLO corrections are the same size as LO $(K\sim 2)$

Scale uncertainties reduced by 30% wrt LO

Invariant-mass distribution

K-factor is not flat over M_{ZH} range
 Large NLO enhancement in the high-energy tail (M_{ZH} > 1 TeV)

[Degrassi, Gröber, MV, Zhao - 2205.02769]

LO Validation

Two-loop: results in agreement with [Degrassi, Giardino, Gröber – 1603.00385] NEW: inclusion of $O(\varepsilon^2)$ terms (renormalization and IR subtraction)