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Motivation and applications

Rare b-quark decays like b → sγ, b → sll or b → ulν are golden modes to test the flavour sector of
the SM.

CKM or loop-suppression (Flavour-changing neutral currents) ⇒ Precise measurement and
theoretical predictions: Indirect search for physics beyond the SM.

Example: b → sγ transition ⇒ Electromagnetic dipole operator Q7.
[Bertolini,Borzumati,Masiero’87] [Grinstein,Springer,Wise’88] [Misiak,Rehman,Steinhauser’17,’20 (latest update)] [...]
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Factorisation theorem for the photon energy spectrum in B → Xsγ: N3LL′ analysis.

dΓ
dEγ

∝ H

∫
J × S + O( ΛQCD

mb
)

Jet and soft function J and S known at N3LO.

Hard function H only at N2LO (before this
paper). [Becher,Neubert’05’06] [Ali,Greub,Pecjak’07] [Bell,Beneke,Huber,Li’10]

[Ligeti,Stewart,Tackmann’08] [Brüser,Liu,Stahlhofen’18’19] [SIMBA’20]

[Dehnadi,Novikov,Tackmann’22]
1



Motivation and applications

Determination of |Vub| from inclusive semi-leptonic B → Xuℓν decays:

|V excl.
ub |/|V incl.

ub | = 0.84±0.04 [HFLAV’22]

However, most recent extraction by Belle compatible with unity. [Belle’23]

Studying the decay t → Wb: Precise differential top-quark decay width.

B → Xsℓℓ: Extraction of zero-crossing of the forward-backward asymmetry at N3LO.
[At NNLO: Bell,Beneke,Huber,Li’10]
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Setup of the calculation

q2 q1

m

jx

. . .

Kinematics: q2
1 = 0, q2

2 = m2

s ≡ q2 = (q1 − q2)2

External currents:

jx = ψ̄Q{1, iγ5, γ
µ, γµγ5, iσµν}ψq

Depending on the phenomenological
application: momentum transfer s = 0 or s ̸= 0.

General structure of the amplitude:∫
d4y

(2π)4 eiq·y⟨ψout
Q (q2, s2)|jx(y)|ψin

q (q1, s1)⟩ = ū(q2, s2)Γ(q1, q2)u(q1, s1)δ(4)(q − q1 − q2)

Example: Vertex function for the tensor current:

Γt
µν(q1, q2) = iF t

1(q2)σµν +
F t

2(q2)
m

(q1,µγν − q1,νγµ) +
F t

3(q2)
m

(q2,µγν − q2,νγµ) +
F t

4(q2)
m2 (q1,µq2,ν − q1,νq2,µ)
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Setup of the calculation

q2 q1

m

jx
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Kinematics: q2
1 = 0, q2

2 = m2

s ≡ q2 = (q1 − q2)2

External currents:

jx = ψ̄Q{1, iγ5, γ
µ, γµγ5, iσµν}ψq

Depending on the phenomenological
application: momentum transfer s = 0 or s ̸= 0.

Two-loop corrections to heavy-to-light form factors are known. [Asatrian et al.’06] [Ali,Greub,Pecjak’07] [Asatrian,Greub,Pecjak’08]

[Ligeti,Stewart,Tackmann’08] [Bell’08] [Bonicani,Ferroglia’08] [Beneke,Huber,Li’08] [Huber’09] [Bell,Beneke,Huber,Li’10]

Analytical three-loop ∝ N3
c corrections to heavy-to-light form factors appeared last year.

[Chen,Wang’18] [Datta,Rana,Ravindran,Sarkar’23]
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Calculation steps

1 Generate all possible Feynman diagrams.

+ . . . + + . . . + + . . . + + . . .

2 Apply Feynman rules.

3 Simplify the colour, tensor and Dirac structure and obtain scalar integral topologies.

4 Reduce them to Master Integrals using Integration-by-parts techniques.

5 Calculate the Master Integrals up to the desired order in the dimensional regulator ϵ.

6 Perform UV renormalization and IR subtraction (matching onto SCET).

7 Use results for a phenomenological analysis.
4



Simplification of the amplitude

Main calculation (s ̸= 0): Carried out in a well-established setup:

Apply projectors to the amplitude to obtain scalar expressions for general QCD gauge
parameter ξ.
Based on the tools qgraf, tapir, exp, calc.

[Nogueira’93] [Gerlach,Herren,Lang’22][Harlander,Seidensticker,Steinhauser’97] [Seidensticker’99]

Cross-check: Tensor current at s = 0: Different setup:

Generate all diagrams using qgraf.
Apply the Feynman rules to setup the amplitude for Feynman gauge ξ = 1.
Apply the Dirac equation and use the Passarino-Veltman procedure to simplify the tensor
structures (FeynHelpers, Fermat). [Shtabovenko’16][Lewis’86]

Identify momenta mappings between different integral topologies and zero-sectors (FEYNSON).
[Magerya’22]

Results in a minimal number of integral families with distinct, linearly independent denominators.
(We find 47 families.)
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Integration-by-parts reduction

IBP reduction to MIs: Automated implementation in Kira:
[Maierhöfer,Usovitsch,Uwer’17][Klappert,Lange,Maierhöfer,Usovitsch’20]

1 IBP reduction (familywise) of sample integrals to find all MIs.
2 Find "better" MIs using ImproveMasters.m to avoid potential "bad" denominators.

[Smirnov,Smirnov’20]
Denominators should factorize in space-time d and the kinematic variables s and m2.

3 IBP reduction (familywise) of the amplitude with the so obtained MIs.
4 Final IBP reduction of all MIs for all integral families to find further symmetries.

Two-loop IBP example:

= − 1
m2 + d−2

(2d−6)m4

We obtain 429 MIs for all form factors (s ̸= 0) and 246 MIs (tensor, s = 0) at three-loop level.
(Full two-loop: 18 MIs).
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Master Integrals
One- and two-loop MIs:

Re-calculated analytically to higher orders
in ϵ.

Three-loop MIs:
Different methods depending on the
off/on-shellness condition s ̸= 0 or s = 0
and on the topology.
⇒ Limit s → 0 of the full amplitude
possible.

Three-loop MIs for s ̸= 0:
Differential equations with respect to
x = s/m2:
LiteRed and subsequent reduction with
Kira. [Lee’23]

∂

∂x
Mn = Anm(ϵ, x)Mm

Method 1: "Expand and Match":
[Fael,Lange,Schönwald,Steinhauser’21,’22,’23]

Series expansions about regular and
singular points of the DE.
Neighboring expansions are then
numerically matched at a point where both
expansions converge.
Here: Expansion points with 50 expansion
terms each:

x = {−∞,−60,−40,−30,−20,−15,−10,
− 8,−7,−6,−5,−4,−3,−2,−1,−1/2,
0, 1/4, 1/2, 3/4, 7/8, 1}

Except for x = 1 and x = −∞: Taylor
expansions, else power-log ansatz.
Boundary conditions: AMFlow with 100
digits in x = 0. [Liu,Ma’23]
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Master Integrals

Method 2: [Ablinger,Blümlein,Marquard,Rana,Schneider’18]

Decoupling of blocks of the DE into
higher-order ones.
Solve these via factorization of the
differential operator and variation of
constants.
No canonical bases.
Iterated integrals over the alphabet:

1
x
,

1
1 ± x

,
1

2 − x

Boundary conditions:
Direct integration (at x = 0).
Mellin-Barnes techniques (at x = 0).
PSLQ on numerical results obtained from
AMFlow (at x = 0). [Bailey,Ferguson’18]

Regularity conditions (in x = 0 and
x = 1).

Topology Result Method

all Semi-analytically M1

N3
C Analytically M2

CFT
2
Fn

2
l Analytically M2

CFT
2
Fn

2
h Analytically M2

CFT
2
Fnlnh Analytically M2

C2
FTFnl Analytically M2

CFCATFnl Analytically M2
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UV renormalization

F x = Zx

(
ZOS

2,Q

)1/2 (
ZOS

2,q

)1/2
F x,bare

∣∣∣∣∣
αbare

s =Zαs α
(nf )
s , mbare=ZOS

m mOS, α
(nf )
s =ζ−1

αs
α

(nl)
s

MS scheme for the strong coupling αs.

On-shell scheme for the heavy-quark mass m: Explicit
mass counterterm insertions in one- and two-loop
diagrams.
(Switch to MS scheme possible in the electronic files.)

[https://www.ttp.kit.edu/preprints/2024/ttp24-017/.]

Decoupling relation in d dimensions:
α

(nf )
s (µ) → α

(nl)
s (µ) (nf = nl + nh)

Anomalous dimensions:

vector and axialvector current: Zv = Za = 1.
scalar and pseudoscalar current: related to the mass
renormalization: Zs = Zp = Zm.
tensor current: cannot be related to other
renormalization factors.

Example: Diagram for mass
renormalization:

δZ
(2)
m

On-shell wave function
renormalization constants:

heavy quark: ZOS
2,Q.

light quark: ZOS
2,q (starting at

two-loops).
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IR subtraction
Form factors F x are still IR divergent!

Universal renormalization constant Z stemming from the SCET approach for any of the UV
renormalized form factors F x:

C = Z−1F x

Z is given by the

anomalous dimensions of the light and heavy quark γq and γQ (γH = γq + γQ)
light-like cusp anomalous dimension γcusp and the QCD β function

lnZ =
α

(nl)
s

4π

[ Γ′
0

4ϵ2
+

Γ0

2ϵ

]
+

(
α

(nl)
s

4π

)2 [
−

3β0Γ′
0

16ϵ3
+

Γ′
1 − 4β0Γ0

16ϵ2
+

Γ1

4ϵ

]
+

(
α

(nl)
s

4π

)3 [11β2
0Γ′

0
72ϵ4

−
5β0Γ′

1 + 8β1Γ′
0 − 12β2

0Γ0

72ϵ3
+

Γ′
2 − 6β0Γ1 − 6β1Γ0

36ϵ2
+

Γ2

6ϵ

]
+ O(α4

s),

Γ = γH(α(nl)
s ) − γcusp(α(nl)

s ) ln
(

µ

m(1 − x)

)
, Γ′ =

∂

∂ lnµ
Γ = −γcusp(α(nl)

s )

All ingredients for the renormalization procedure are known.
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Renormalization Group Equations

The two-fold structure of the RGE
d

d ln(µ)
C(s, µ) =

[
γcusp(α(nl)

s ) ln
( (1 − x)m

µ

)
+ γH(α(nl)

s ) + γQCD(α(nf )
s )

]
C(s, µ)

can be used to distinguish two scales µ (SCET) and ν (QCD)

d

d ln(µ)
C(s, µ, ν) =

[
γcusp(α(nl)

s (µ)) ln
( (1 − x)m

µ

)
+ γH(α(nl)

s (µ))
]
C(s, µ, ν)

d

d ln(ν)
C(s, µ, ν) = γQCD(α(nf )

s (ν))C(s, µ, ν)

The dependence of the matching coefficients C on Lµ = ln(µ2/m2) and Lν = ln(ν2/m2) is then
predicted from lower loops using the

decoupling relation: α
(nf )
s (µ) → α

(nl)
s (µ)

running of the strong coupling: α
(nf )
s (ν) → α

(nf )
s (µ)

Cross-check of the genuine three-loop calculation.
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Ward identity, pole cancellations and further checks

QCD gauge parameter ξ drops out after
UV renormalization.
Equations of motion ⇒ Ward identities:

−qµΓv
µ = mΓs ⇒ F v

1 −
2s
m2 F

v
3 = F s

Cancellation of poles in 1/ϵ:

δ

(
C(3)

∣∣
ϵi

)
=
F (3)

∣∣
ϵi

+ F (CT+Z)
∣∣
ϵi

F (CT+Z)
∣∣
ϵi

In the range −75 < s < 15/16:
cancellation of at least 16 digits for
each colour of each form factor and
each 1/ϵ pole.

−100 −80 −60 −40 −20 0

s/m2

−40

−30

−20

−10

lo
g

1
0

( δ(
C

v
,(

3
)

1

))

C2
ACF

ε−6

ε−5

ε−4

ε−3

ε−2

ε−1
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We find agreement with analytical three-loop ∝ N3
c

corrections to heavy-to-light form factors appeared in
2308.12169. [Chen,Wang’18] [Datta,Rana,Ravindran,Sarkar’23]

Subsequent analytical calculation of all fermionic pieces
(except linear in nh) in 2407.14550 confirms our
results. [Datta,Rana’24]
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Numerical results

Plots of the finite pieces of the one-, two- and three loop form factors F x at µ2 = m2:
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Complete expressions can be obtained online and are implemented in the Fortran library FFh2l
(with Mathematica interface).

[https://www.ttp.kit.edu/preprints/2024/ttp24-017/.] [https://gitlab.com/formfactors3l/ffh2l/.]
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Analytical results

Example: Analytical result for the n2
l -part of the finite three-loop matching coefficient Ct

1 at
ν2 = µ2 = m2:

C
t,(3),n2

l
1 = −

370949
419904

−
221π4

38880
− π2

( 829
3888

−
(3 − 11x)H1

81x
+

1
27
H0,1 +

2
27
H1,1

)
+

(657 − 1430x)H1

1458x

+
(48 − 121x)H0,1

162x
+

(48 − 121x)H1,1

81x
+

(3 − 11x)H0,0,1

27x
+

2(3 − 11x)H0,1,1

27x
+

2(3 − 11x)H1,0,1

27x

−
4
9
H1,1,0,1 +

4(3 − 11x)H1,1,1

27x
−

1
9
H0,0,0,1 −

2
9
H0,0,1,1 −

2
9
H0,1,0,1 −

4
9
H0,1,1,1

−
2
9
H1,0,0,1 −

4
9
H1,0,1,1 −

8
9
H1,1,1,1 −

(
323 + 126H1

)
ζ3

486

The function space is given by harmonic polylogarithms (if we allow evaluation at argument 1 − x).

Complete expressions can be obtained online and are implemented in the Fortran library FFh2l
(with Mathematica interface).

[https://www.ttp.kit.edu/preprints/2024/ttp24-017/.] [https://gitlab.com/formfactors3l/ffh2l/.]
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Hard function in B → Xsγ to three-loops

SCET-based approach for the photon energy spectrum of
B → Xsγ:
N3LL′ analysis requires the hard function H to three-loops.

dΓ
dEγ

∝ H

∫
J × S + O( ΛQCD

mb
)

We have to consider the electromagnetic dipole operator Q7:

Q7 = −
emb(µ)

4π2 (s̄LσµνF
µνbR) matching−−−−−−→

SCET
JA = (ξ̄Whc)/ϵ⊥(1 − γ5)hv

On-shell matching yields for momentum transfer s = 0 (after IR-subtraction):

⟨sγ|Q7|b⟩ = −
emb 2Eγ

4π2

(
Ct

1 −
1
2
Ct

2

)∣∣s=0︸ ︷︷ ︸
≡Cγ

×JA

The hard function is given by:

H(µ) =
∣∣∣Cγ

∣∣Lν =0

∣∣∣2
⇒ H(3)(mb) = −181.16173810663548219

More than a factor two outside of the nuisance parameter range assumed in 2211.07663.
[Dehnadi,Novikov,Tackmann’22]
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Conclusion
We calculated the three-loop corrections of O(α3

s) to heavy-to-light form factors for generic external
currents.

The master integrals are obtained:

analytically in the case of all fermionic contributions (except linear in nh).
semi-analytically using the "expand and match" method for all topologies.

We calculated the hard matching coefficients in SCET for all currents.

The results are available in electronic form and implemented in the Fortran code FFh2l (with
Mathematica interface) for numerical evaluations in the relavent phase space.

[https://www.ttp.kit.edu/preprints/2024/ttp24-017/.] [https://gitlab.com/formfactors3l/ffh2l/.]

The tensor coefficients are used to extract the hard function in the factorization theorem of B → Xsγ
to three-loops.

Work in progress: Improve theory predictions for the inclusive decays B → Xulν used in the
extraction of |Vub|.

Thank you for your attention!
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