

Quark-Mass Effects in Higgs Production

Tom Schellenberger

with M. Czakon, F. Eschment, M. Niggetiedt, R. Ponecelet

Based on Phys.Rev.Lett. 132 (2024) 21, 211902 & 2407.12413

CRC Young Scientist Meeting

Motivation

- Higgs production cross section is central observable
- Gluon fusion channel is the dominant production channel
- Crucial to reduce Theory uncertaities

09/26/24

Tom Schellenberger

2 / 14

The Gluon Fusion Channel

• Gluon-fusion receives large corrections (~100% at NLO)

- Gluon-fusion receives large corrections (~100% at NLO)
- Calculations in full QCD are hard!
 Instead work in the Heavy-Top-Limit (HTL)
 - One less loop
 - One less scale
- Better agreement after rescaling
 - Higgs-Effective-Field-Theory (HEFT)

09/26/24

Tom Schellenberger

0000

0000

r =

Current state of the art is N3LO <u>Anastasiou et al., 2016</u>

 $\sigma = 48.58 \text{ pb}_{-3.27 \text{ pb}(-6.72\%)}^{+2.22 \text{ pb}(+4.56\%)} \text{ (theory)} \pm 1.56 \text{ pb} (3.20\%) \text{ (PDF} + \alpha_s)$

Current state of the art is N3LO <u>Anastasiou et al., 2016</u>

 $\sigma = 48.58 \text{ pb}_{-3.27 \text{ pb}(-6.72\%)}^{+2.22 \text{ pb}(+4.56\%)} \text{ (theory)} \pm 1.56 \text{ pb} (3.20\%) \text{ (PDF} + \alpha_s)$

09/26/24

Current state of the art is N3LO <u>Anastasiou et al., 2016</u>

^{09/26/24}

Tom Schellenberger

Current state of the art is N3LO <u>Anastasiou et al., 2016</u>

 $\sigma = 48.58 \text{ pb}_{-3.27 \text{ pb}(-6.72\%)}^{+2.22 \text{ pb}(+4.56\%)} \text{ (theory)} \pm 1.56 \text{ pb} (3.20\%) \text{ (PDF} + \alpha_s)$

Current state of the art is N3LO <u>Anastasiou et al., 2016</u>

09/26/24

Current state of the art is N3LO <u>Anastasiou et al., 2016</u>

Yukawa-Couplings

- Higgs-pT and -rapidity distributions can be used to measure the couplings to the lighter quark flavors
- Charm quark Yukawa coupling almost in reach with HL-LHC.

Tom Schellenberger

Ingredients for NNLO

Double-Virtual

- Deep asymptotic expansion in $m_H^2/m_t^2, m_b^2/m_H^2$
- Single massive quark flavor Czakon et al., 2020
- Two massive quark flavors
 <u>Niggetiedt et al., 2023</u>

Real-Virtual

- Single massive flavor amplitudes through interpolation of numerical grid
- Two different quark flavors result in factorization → One-loop integrals

Double-Real

- Calculated in <u>Del Duca et al., 2001</u>
- We use calculation from <u>Budge et al., 2020</u> as implemented in MCFM <u>Campbell et al., 1999</u>
- Scalar integrals with QCDLOOP Carrazza et al., 2016

Ingredients for NNLO

How to Treat massive b-quarks?

4 Flavor-Scheme (4FS)

- Consistently treat bottom quark as massive
- Exclude bottom-quark from initial state
- Also consider massive bottom-quark radiation

Tom Schellenberger

How to Treat massive b-quarks?

4 Flavor-Scheme (4FS)

- Consistently treat bottom quark as massive
- Exclude bottom-quark from initial state
- Also consider massive bottom-quark radiation

5 Flavor-Scheme (5FS)

- Treat bottom-quark as a massless particle
- Except for **closed** fermion loops that **couple to the Higgs**

Tom Schellenberger

Order	$\sigma_{\rm HEFT}$ [pb]				
		$\sqrt{s} = 13 \text{ TeV}$			
	5 FS	4FS	4FS	4FS	4FS
		$m_b = 0.01 \text{ GeV}$	$m_b = 0.1 \text{ GeV}$	$m_b = 4.78 \text{ GeV}$	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$
$\mathcal{O}(\alpha_s^2)$	+16.30	+16.27	+16.27	+16.27	16.27
LO	$16.30\substack{+4.36 \\ -3.10}$	$16.27^{+4.63}_{-3.22}$	$16.27\substack{+4.63 \\ -3.22}$	$16.27^{+4.63}_{-3.22}$	$16.27\substack{+4.63 \\ -3.22}$
$\mathcal{O}(\alpha_s^3)$	+21.14	+20.08(3)	+20.08(3)	+20.08(3)	+20.08(3)
NLO	$37.44_{-6.29}^{+8.42}$	$36.35(3)^{+8.57}_{-6.32}$	$36.35(3)^{+8.57}_{-6.32}$	$36.35(3)^{+8.57}_{-6.32}$	$36.35(3)^{+8.57}_{-6.32}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+10.8(4)	+11.1(4)	+9.5(2)	+9.6(2)
NNLO	$47.16_{-4.77}^{+4.21}$	$47.2(4)^{+5.4}_{-5.4}$	$47.5(4)^{+5.4}_{-5.5}$	$45.9(2)^{+4.3}_{-4.9}$	$46.0(2)^{+4.4}_{-5.0}$

Order	$\sigma_{ m HEFT}$ [pb]				
	$\sqrt{s} = 13 \text{ TeV}$				
	5FS $4FS$ $4FS$ $4FS$ $4FS$				4FS
		$m_b = 0.01 \text{ GeV}$	$m_b = 0.1 \text{ GeV}$	$m_b = 4.78 \text{ GeV}$	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$
$\mathcal{O}(\alpha_s^2)$	+16.30	+16.27	+16.27	+16.27	16.27
LO	$16.30^{+4.36}_{-3.10}$	$16.27^{+4.63}_{-3.22}$	$16.27^{+4.63}_{-3.22}$	$16.27^{+4.63}_{-3.22}$	$16.27^{+4.63}_{-3.22}$
$\mathcal{O}(\alpha_s^3)$	+21.14	+20.08(3)	+20.08(3)	+20.08(3)	+20.08(3)
NLO	$37.44_{-6.29}^{+8.42}$	$36.35(3)^{+8.57}_{-6.32}$	$36.35(3)^{+8.57}_{-6.32}$	$36.35(3)^{+8.57}_{-6.32}$	$36.35(3)^{+8.57}_{-6.32}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+10.8(4)	+11.1(4)	+9.5(2)	+9.6(2)
NNLO	$47.16_{-4.77}^{+4.21}$	$47.2(4)^{+5.4}_{-5.4}$	$47.5(4)^{+5.4}_{-5.5}$	$45.9(2)^{+4.3}_{-4.9}$	$46.0(2)^{+4.4}_{-5.0}$

• Difference at LO only caused by normalization of the PDFs

Order	$\sigma_{ m HEFT}$ [pb]				
			$\sqrt{s} = 13 \text{ TeV}$		
	5 FS	4FS	4FS	4FS	4FS
		$m_b = 0.01 \text{ GeV}$	$m_b = 0.1 \text{ GeV}$	$m_b = 4.78 \text{ GeV}$	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$
$\mathcal{O}(\alpha_s^2)$	+16.30	+16.27	+16.27	+16.27	16.27
LO	$16.30\substack{+4.36 \\ -3.10}$	$16.27^{+4.63}_{-3.22}$	$16.27\substack{+4.63 \\ -3.22}$	$16.27^{+4.63}_{-3.22}$	$16.27\substack{+4.63 \\ -3.22}$
$\mathcal{O}(\alpha_s^3)$	+21.14	+20.98(3)	+20.08(3)	+20.08(3)	+20.08(3)
NLO	$37.44^{+8.42}_{-6.29}$	$36.35(3)^{+8.57}_{-6.32}$	$36.35(3)^{+8.57}_{-6.32}$	$36.35(3)^{+8.57}_{-6.32}$	$36.35(3)^{+8.57}_{-6.32}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+10.8(4)	+11.1(4)	+9.5(2)	+9.6(2)
NNLO	$47.16_{-4.77}^{+4.21}$	$47.2(4)^{+5.4}_{-5.4}$	$47.5(4)^{+5.4}_{-5.5}$	$45.9(2)^{+4.3}_{-4.9}$	$46.0(2)^{+4.4}_{-5.0}$

- Difference at LO only caused by normalization of the PDFs
- More significant difference at NLO because additional channel opens up

Order	$\sigma_{ m HEFT} ~[m pb]$				
			$\sqrt{s} = 13 \text{ TeV}$		
	5 FS	4FS	4FS	4FS	4FS
		$m_b = 0.01 \text{ GeV}$	$m_b = 0.1 \text{ GeV}$	$m_b = 4.78 \text{ GeV}$	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$
$\mathcal{O}(\alpha_s^2)$	+16.30	+16.27	+16.27	+16.27	16.27
LO	$16.30\substack{+4.36 \\ -3.10}$	$16.27^{+4.63}_{-3.22}$	$16.27^{+4.63}_{-3.22}$	$16.27^{+4.63}_{-3.22}$	$16.27^{+4.63}_{-3.22}$
$\mathcal{O}(lpha_s^3)$	+21.14	+20.08(3)	+20.08(3)	+20.08(3)	+20.08(3)
NLO	$37.44_{-6.29}^{+8.42}$	$36.35(3)^{+8.57}_{-6.32}$	$36.35(3)^{+8.57}_{-6.32}$	$36.35(3)^{+8.57}_{-6.32}$	$36.35(3)^{+8.57}_{-6.32}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+10.8(4)	+11.1(4)	+9.5(2)	+9.6(2)
NN O	$47.16^{+4.21}_{-4.77}$	$47.2(4)^{+5.4}_{-5.4}$	$47.5(4)^{+5.4}_{-5.5}$	$45.9(2)^{+4.3}_{-4.9}$	$46.0(2)^{+4.4}_{-5.0}$

- Difference at LO only caused by normalization of the PDFs
- More significant difference at NLO because additional channel opens up
- At NNLO we have real mass dependence
 - Nice convergence for $m_b \rightarrow 0$
 - Effect of finite m_b is ~3%, order of magnitude as estimated in <u>Pietrulewicz et al., 2023</u>

Tom Schellenberger

Mass renormalization?

On-shell Scheme

- Renormalized mass is the pole mass
- Mass is constant

MS Scheme

- Only remove divergent parts
- Mass is now running

Mass renormalization?

On-shell Scheme

- Renormalized mass is the pole mass
- Mass is constant

$$Z_m^{\overline{\text{MS}}}\overline{m} = Z_m^{\text{OS}} m^{\text{OS}} \qquad \begin{array}{c} \underline{\text{Gray et al., 1990}}\\ \text{Consistency with}\\ \text{flavor scheme!} \end{array}$$
$$m^{\text{OS}} = \overline{m} \left(1 + c_1 \frac{\alpha_s}{\pi} + c_2 \left(\frac{\alpha_s}{\pi} \right)^2 + \mathcal{O}(\alpha^3) \right)$$

MS Scheme

- Only remove divergent parts
- Mass is now running

Mass renormalization?

On-shell Scheme

- Renormalized mass is the pole mass
- Mass is constant

 $\Lambda \Lambda \overline{MS} = \Lambda \Lambda OS + \delta \Lambda \Lambda$

$$Z_{m}^{\overline{\text{MS}}}\overline{m} = Z_{m}^{\text{OS}}m^{\text{OS}} \qquad \begin{array}{c} \text{Gray et al., 1990} \\ \text{Consistency with} \\ \text{flavor scheme!} \\ m^{\text{OS}} = \overline{m}\left(1 + c_{1}\frac{\alpha_{s}}{\pi} + c_{2}\left(\frac{\alpha_{s}}{\pi}\right)^{2} + \mathcal{O}(\alpha^{3})\right) \end{array}$$

MS Scheme

- Only remove divergent parts
- Mass is now running

$$\delta \mathcal{M}^{(1)} = \overline{m}c_1 \frac{\alpha_s}{\pi} \frac{\mathrm{d}\mathcal{M}^{\mathrm{OS},(0)}}{\mathrm{d}m} \Big|_{m=\overline{m}},$$

$$\delta \mathcal{M}^{(2)} = \overline{m} \left[c_1 \frac{\alpha_s}{\pi} \frac{\mathrm{d}\mathcal{M}^{\mathrm{OS},(1)}}{\mathrm{d}m} \Big|_{m=\overline{m}} + c_2 \left(\frac{\alpha_s}{\pi} \right)^2 \frac{\mathrm{d}\mathcal{M}^{\mathrm{OS},(0)}}{\mathrm{d}m} \Big|_{m=\overline{m}} \right] + \frac{1}{2} \left(\overline{m}c_1 \frac{\alpha_s}{\pi} \right)^2 \frac{\mathrm{d}^2 \mathcal{M}^{\mathrm{OS},(0)}}{\mathrm{d}m^2} \Big|_{m=\overline{m}}$$

09/26/24

- Why don't you consider the interference to bbH?
- Is our observable even infrared safe?

- Why don't you consider the interference to bbH?
- Is our observable even infrared safe?

- This contribution is considered for corrections of bbH <u>Dittmaier et al.</u>
- If we consider a theory with n_b bottom quarks, then all divergences and gauge dependencies must cancel independent from n_b and Y_b

- Why don't you consider the interference to bbH?
- Is our observable even infrared safe?

• Why can you make the b-quark massive only inside certain loops?

- This contribution is considered for corrections of bbH <u>Dittmaier et al.</u>
- If we consider a theory with n_b bottom quarks, then all divergences and gauge dependencies must cancel independent from n_b and Y_b

- Why don't you consider the interference to bbH?
- Is our observable even infrared safe?

• Why can you make the b-quark massive only inside certain loops?

- This contribution is considered for corrections of bbH <u>Dittmaier et al.</u>
- If we consider a theory with n_b bottom quarks, then all divergences and gauge dependencies must cancel independent from n_b and Y_b

Same argument

• Why don't you consider the interference to bbH?

0000

0000

b 🔺

• Is our observable even infrared safe?

 Why can you make the b-quark massive only inside certain loops?

• Can we renormalize the Yukawa coupling separately from the mass?

- This contribution is considered for corrections of bbH <u>Dittmaier et al.</u>
- If we consider a theory with n_b bottom quarks, then all divergences and gauge dependencies must cancel independent from n_b and Y_b

Same argument

- Why don't you consider the interference to bbH?
- Is our observable even infrared safe?

 Why can you make the b-quark massive only inside certain loops?

 Can we renormalize the Yukawa coupling separately from the mass?

- This contribution is considered for corrections of bbH <u>Dittmaier et al.</u>
- If we consider a theory with n_b bottom quarks, then all divergences and gauge dependencies must cancel independent from n_b and Y_b

Same argument

- Yes, for QCD corrections
- But no for EW corrections

09/26/24

Order	$(\sigma_t^{\overline{\mathrm{MS}}} - \sigma_t^{\mathrm{OS}}) \ [\mathrm{pb}]$
ν	$\sqrt{s} = 13 \text{ TeV}$
$\mathcal{O}(\alpha_s^2)$	-0.04
LO	$-0.04^{+0.12}_{-0.17}$
${\cal O}(lpha_s^3)$	+0.02
NLO	$-0.02^{+0.14}_{-0.30}$
$\mathcal{O}(\alpha_s^4)$	+0.01
NNLO	$-0.01^{+0.12}_{-0.24}$

 $m_{H} = 125 \,\text{GeV}$ $m_{t} = 173.1 \,\text{GeV}$ $m_{t}(m_{t}) = 162.7 \,\text{GeV}$ $m_{b} = 4.78 \,\text{GeV}$ $m_{b}(m_{b}) = 4.18 \,\text{GeV}$

09/26/24

Tom Schellenberger

Order	$(\sigma_t^{\rm MS} - \sigma_t^{\rm OS}) \; [\rm pb]$
	$\overline{s} = 13 \text{ TeV}$
$\mathcal{O}(\alpha_s^2)$	-0.04
LO	$-0.04^{+0.12}_{-0.17}$
$\mathcal{O}(\alpha_s^3)$	+0.02
NLO	$-0.02\substack{+0.14\\-0.30}$
$\mathcal{O}(\alpha_s^4)$	+0.01
NNLO	$-0.01\substack{+0.12\\-0.24}$

$m_{H} = 125 \text{GeV}$
$m_t = 173.1 \text{GeV}$
$m_t(m_t) = 162.7 \text{GeV}$
$m_b = 4.78 \text{GeV}$
$m_b(m_b) = 4.18 \text{GeV}$

Finite top-mass effects are small

Tom Schellenberger

The renormalization schemes of the top-quark mass are almost _ identical!

Order	$(\sigma_t^{\overline{\mathrm{MS}}} - \sigma_t^{\mathrm{OS}}) \ [\mathrm{pb}]$
١	$\sqrt{s} = 13 \text{ TeV}$
$\mathcal{O}(\alpha_s^2)$	-0.04
LO	$-0.04^{+0.12}_{-0.17}$
$\mathcal{O}(\alpha_s^3)$	+0.02
NLO	$-0.02^{+0.14}_{-0.30}$
$\mathcal{O}(\alpha_s^4)$	+0.01
NNLO	$-0.01^{+0.12}_{-0.24}$

 $m_{H} = 125 \,\text{GeV}$ $m_{t} = 173.1 \,\text{GeV}$ $m_{t}(m_{t}) = 162.7 \,\text{GeV}$ $m_{b} = 4.78 \,\text{GeV}$ $m_{b}(m_{b}) = 4.18 \,\text{GeV}$

- Finite top-mass effects are small
 - The renormalization schemes of the top-quark mass are almost identical!
- Scale uncertainties for top-bottom interference contribution are reduced significantly

09/26/24

Order	$(\sigma_t^{\overline{\mathrm{MS}}} - \sigma_t^{\mathrm{OS}}) \ [\mathrm{pb}]$
١	$\sqrt{s} = 13 \text{ TeV}$
$\mathcal{O}(\alpha_s^2)$	-0.04
LO	$-0.04^{+0.12}_{-0.17}$
$\mathcal{O}(\alpha_s^3)$	+0.02
NLO	$-0.02^{+0.14}_{-0.30}$
$\mathcal{O}(\alpha_s^4)$	+0.01
NNLO	$-0.01\substack{+0.12\\-0.24}$

 $m_{H} = 125 \,\text{GeV}$ $m_{t} = 173.1 \,\text{GeV}$ $m_{t}(m_{t}) = 162.7 \,\text{GeV}$ $m_{b} = 4.78 \,\text{GeV}$ $m_{b}(m_{b}) = 4.18 \,\text{GeV}$

- Finite top-mass effects are small
 - The renormalization schemes of the top-quark mass are almost identical!
- Scale uncertainties for top-bottom interference contribution are reduced significantly
- Influence of the flavor scheme on the top-bottom interference is negligible

09/26/24

09/26/24

Order	$(\sigma_t^{\overline{\mathrm{MS}}} - \sigma_t^{\mathrm{OS}}) \ [\mathrm{pb}]$
v	$\sqrt{s} = 13 \text{ TeV}$
$\mathcal{O}(\alpha_s^2)$	-0.04
LO	$-0.04^{+0.12}_{-0.17}$
$\mathcal{O}(\alpha_s^3)$	+0.02
NLO	$-0.02^{+0.14}_{-0.30}$
$\mathcal{O}(\alpha_s^4)$	+0.01
NNLO	$-0.01^{+0.12}_{-0.24}$

 $m_{H} = 125 \,\text{GeV}$ $m_{t} = 173.1 \,\text{GeV}$ $m_{t}(m_{t}) = 162.7 \,\text{GeV}$ $m_{b} = 4.78 \,\text{GeV}$ $m_{b}(m_{b}) = 4.18 \,\text{GeV}$

• Finite top-mass effects are small

- The renormalization schemes of the top-quark mass are almost identical!
- Scale uncertainties for top-bottom interference contribution are reduced significantly
- Influence of the flavor scheme on the top-bottom interference is negligible
- MS-scheme shows much better perturbative convergence + smaller scale uncertainties
 - Results are compatible within scale uncertainties

Tom Schellenberger

Top-Bottom Interference Effects

$$H_T = \sqrt{m_H^2 + p_T^2} + \sum_i |p_{i,T}|$$

- *p_T*-distribution known (except for the zero-bin) and we find good agreement
 - Lindert et al., 2017
 - <u>Caola et al., 2018</u>
 - Bonciani et al., 2022
- Rapidity distributions constitute new results

2.4

3.2

LHC@13 TeV

Scale: $H_T/2$

PDF: NNPDF31

Top-Bottom Interference Effects

$$\begin{array}{c} 0.0 \\ -0.1 \\ 0.0 \\ -0.2 \\ -0.3 \\ -0.4 \\ -0.$$

$$H_T = \sqrt{m_H^2 + p_T^2} + \sum_i |p_{i,T}|$$

- *p_T*-distribution known (except for the zero-bin) and we find good agreement
 - Lindert et al., 2017
 - <u>Caola et al., 2018</u>
 - Bonciani et al., 2022
- Rapidity distributions constitute new results
- Mass-effects most notable at low *p*_T

Top-Bottom Interference Effects

$$H_{T} = \sqrt{m_{H}^{2} + p_{T}^{2}} + \sum_{i} |p_{i,T}|$$

- *p_T*-distribution known (except for the zero-bin) and we find good agreement
 - Lindert et al., 2017
 - <u>Caola et al., 2018</u>
 - Bonciani et al., 2022
- Rapidity distributions constitute new results
- Mass-effects most notable at low *p*_T
- Mass-effects remain relatively constant in rapidity (~ -4% shift)

2.4

 η_H

3.2

LHC@13 TeV

Scale: $H_T/2$

PDF: NNPDF31

Distributions: HEFT vs. Full Theory

- Full theory: At very high p_T , p_T is the only relevant scale $d \sigma/dp_T^2 \sim 1/p_T^4$
- Effective theory: dimensionful coupling $d \sigma/dp_T^2 \sim 1/(v^2 p_T^2)$

Conclusions

- Complete analysis of top-bottom-interference effects on the Higgs production cross section at NNLO
- Addresses one of the leading theory uncertainties
- MS scheme shows better perturbative convergence and smalle scale uncertainties than OS scheme
- Good agreement between 4- and 5-flavor scheme
- Differential distributions, including novel rapidity spectra

 $\sigma_{ggH} = 48.81(1)^{+0.65}_{-2.02}$ (N³LO HEFT) $- 0.16^{+0.13}_{-0.03}$ (NNLO t) $- 1.74(2)^{+0.13}_{-0.03}$ (NNLO $t \times b$) pb.

Conclusions

- Complete analysis of top-bottom-interference effects on the Higgs production cross section at NNLO
- Addresses one of the leading theory uncertainties
- MS scheme shows better perturbative convergence and smalle scale uncertainties than OS scheme
- Good agreement between 4- and 5-flavor scheme
- Differential distributions, including novel rapidity spectra

 $\sigma_{ggH} = 48.81(1)^{+0.65}_{-2.02}$ (N³LO HEFT) $- 0.16^{+0.13}_{-0.03}$ (NNLO t) $- 1.74(2)^{+0.13}_{-0.03}$ (NNLO $t \times b$) pb.

Thanks for your attention!

Backup

Top-Bottom Interference Contribution

Order	$\sigma_{t imes b}$ [pb]			
		$\sqrt{s} = 13$ '	TeV	
	5 FS	$5\mathrm{FS}$	5 FS	4FS
	$m_t = 173.06 \text{ GeV}$	$m_t = 173.06~{\rm GeV}$	$m_t(m_t) = 162.7 \text{ GeV}$	$m_t = 173.06 \text{ GeV}$
	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$	$m_b = 4.78~{\rm GeV}$	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$	$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$
$\mathcal{O}(\alpha_s^2)$	-1.11	-1.98	-1.12	-1.15
LO	$-1.11\substack{+0.28\\-0.43}$	$-1.98\substack{+0.38\\-0.53}$	$-1.12\substack{+0.28\\-0.42}$	$-1.15\substack{+0.29\\-0.45}$
$\mathcal{O}(\alpha_s^3)$	-0.65	-0.44	-0.64	-0.66
NLO	$-1.76_{-0.28}^{+0.27}$	$-2.42^{+0.19}_{-0.12}$	$-1.76_{-0.28}^{+0.27}$	$-1.81\substack{+0.28\\-0.30}$
$\mathcal{O}(\alpha_s^4)$	+0.02	+0.43	-0.02	-0.02
NNLO	$-1.74(2)^{+0.13}_{-0.03}$	$-1.99(2)^{+0.29}_{-0.15}$	$-1.78(1)^{+0.15}_{-0.03}$	$-1.83(2)^{+0.14}_{-0.03}$

Finite Top-Quark Mass Effects

Order	$(\sigma_t - \sigma_{\text{HEFT}}) \text{ [pb]}$		
	$\sqrt{s} = 13 \text{ TeV}$		
	5FS $4FS$		
	$m_t = 173.06 \text{ GeV}$ $m_t = 173.06 \text{ GeV}$		
		$\overline{m}_b(\overline{m}_b) = 4.18 \text{ GeV}$	
LO	-	-	
$\mathcal{O}(\alpha_s^3)$	-0.30	-0.27	
NLO	$-0.30^{+0.10}_{-0.17}$	$-0.27^{+0.09}_{-0.16}$	
$\mathcal{O}(\alpha_s^4)$	+0.14	+0.12	
NNLO	$-0.16\substack{+0.13\\-0.03}$	$-0.15\substack{+0.10\\-0.02}$	

Real-Virtual Corrections

- Variables: $\hat{s}, \hat{t}, \hat{u}, m_H^2, m_q^2$
- Introduce dimensionless variables and fix ratio m_q^2/m_H^2
 - z parametrizes soft limit
 - λ Parametrizes collinear limit

- Solve master integrals with differential equation in $m_q^2/m_{H^*}^2$ z and λ
- Boundary condition $m_q^2/m_H^2 \rightarrow \infty$ with large mass expansion

Tom Schellenberger

Real-Virtual Corrections

- Create grid with numerical values of squared amplitude
- Subtract IR singularities:

$$\langle M_{gg \to Hg}^{(0)} | M_{gg \to Hg}^{(1)} \rangle |_{\text{regulated}} \equiv \langle M_{gg \to Hg}^{(0)} | M_{gg \to Hg}^{(1)} \rangle - \left[r \langle M_{gg \to Hg,\text{HTL}}^{(0)} | M_{gg \to Hg,\text{HTL}}^{(1)} \rangle + \frac{8\pi\alpha_s}{\hat{t}} \langle P_{gg}^{(0)} \left(\frac{\hat{s}}{\hat{s} + \hat{u}}\right) \rangle \langle M_{gg \to H}^{(0)} | M_{gg \to H}^{(1)} - M_{gg \to H,\text{HTL}}^{(1)} \rangle \right]$$

- Interpolate to any phace space point with cubic splines
- Add back subracted terms unsing analytical expressions

Evolution of differential equations

Tom Schellenberger

 $z = 1 - m_H^2 / \hat{s}$

Tom Schellenberger