
1 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Steinbuch Centre for Computing (SCC)

Performance Tools

Holger Obermaier

KIT – The Research University in the Helmholtz Association www.kit.edu



2 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Optimization cycle

Tool Test Cases

Likwid Tools: Overview

Likwid Tools: likwid-topology

Likwid Tools: likwid-bench

Compiler Optimization Report

/usr/bin/time

Application Performance Snapshot (APS)

Likwid Tools: likwid-perfctr

Likwid Tools: likwid-perfctr Marker API

perf tools

Intel Trace Analyzer and Collector (ITAC)

References



Optimization cycle

3 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Current state of hardware development

CPU cores do not get faster anymore
More and more cores and nodes
Multiple levels of caches try to hide memory latency

⇒ Optimizing code gets more complex
⇒ Support by performance tools is needed

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

CPU 1

8C 8C

8C 8C

CPU 2

8C 8C

8C 8C

RAM

RAM

RAM

RAM

RAM

RAM

CPU 1

UPI

C C C C

MC C

C C

C MC

C C

C C

C C

C C

C C

RAM

RAM

RAM

RAM

RAM

RAM

CPU 2

UPI

C C C C

MC C

C C

C MC

C C

C C

C C

C C

C C



Optimization cycle (2)

4 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Iterative process

Collect hardware information
Collect performance data
Analyze hardware information and performance data

Where is most of the time spent?
What is the expected performance?
Are cores evenly utilized?
Is memory access local?
Does communication limit performance?



Optimization cycle (3)

5 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Iterative process (continued)

Fix problem
Appropriate data structure (e.g. Array of structs vs. struct of arrays)
Loop layout (allow compiler vectorization, CPU prefetching)
Blocking (Cache reuse)
Compiler and MPI command line options (e.g. process binding)

Repeat until effort is no longer worth expected improvement

This talk focuses on hardware information and performance data
collection and analysis



Tool Test Cases

6 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Benchmark stream

Copy c = a, a, c ∈ Rn

Scale b = αc, b, c ∈ Rn, α ∈ R

Add c = a + b, a,b, c ∈ Rn

Triad a = b + αc, a,b, c ∈ Rn, α ∈ R

O(n) memory operations, O(n) compute operations
⇒ Memory bandwidth bound



Tool Test Cases

7 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Benchmark dgemm

Multiply C = A · B, A,B,C ∈ Rn×n

O(n2) memory operations, O(n3) compute operations
⇒ Floating point bound

Benchmark rank_league

Asynchronous point to point MPI communication
O(1) memory operations, O(1) compute operations

⇒ Communication bound



Likwid Tools

8 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Collection of simple command line tools
Hardware information:
likwid-topology

Micro benchmarks:
likwid-bench

Pinning:
likwid-pin, likwid-mpirun
Performance counters:
likwid-perfctr



Likwid Tools: likwid-topology

9 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

CPU topology (hardware threads, cores, sockets)
Cache topology (location and size of caches)
Cache properties (cache line size, associativity)
NUMA topology (location and size of main memory)
Get knowledge on how to bind your tasks, pin your threads

Example

likwid-topology on Intel Xeon Broadwell
likwid-topology cache topology on Intel Xeon Broadwell

../Trac/perf/wiki/Tools/likwid/example_topology_broadwell.html
../Trac/perf/wiki/Tools/likwid/example_topology_broadwell_cache.html


Hands On

10 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Preparation

Get familiar with likwid-topology. Use
-h to get help
-g to get a graphical output
-c to get cache information

Be aware uc1 and uc1e have different hardware.
For the hands on examine the questions on the login node

Questions

How many hardware threads, cores, sockets are available?
How many cache levels are available?
Which sizes do they offer?
How many NUMA domains are available?



Likwid Tools: likwid-bench

11 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

What is the maximum
achievable memory bandwidth
achievable cache bandwidth
achievable computing power
Vector (AVX, AVX2) computing power
Fused multiply-add (FMA) computing power

Example

likwid-bench on Intel Xeon Broadwell

../Trac/perf/wiki/Tools/likwid/example_bench_broadwell.html


Hands On

12 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Preparation

Start an interactive one node job
Get familiar with likwid-bench. Use
-h to get help
-a to list available micro benchmarks
-l to list properties of test
-p to list available thread domains

Use micro benchmarks stream_avx_fma and
stream_mem_avx_fma to answer the questions

Questions

What memory bandwidth can be reached using only one thread?
What is the maximum achievable main memory bandwidth?
What about L1, L2 and L3 cache bandwidth?



Compiler Vectorization Report (Intel)

13 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Usage vectorization report

module add compiler/intel/18.0
icc ${OPT_FLAGS} \

-qopt-report \
-qopt-report-phase=vec \
-qopt-report-stdout \
${SOURCE} -o ${OUTFILE}

Example
Intel vectorization report: stream

../Trac/perf/wiki/performance/compiler_optionen/intel/example_vec_report_stream.html


Compiler Vectorization report (GCC)

14 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Usage vectorization report

module add compiler/gnu/7
gcc ${OPT_FLAGS} \

-fopt-info-vec \
${SOURCE} -o ${OUTFILE}

Example
GCC vectorization report: stream

../Trac/perf/wiki/performance/compiler_optionen/gcc/example_vec_report_stream.html


Hands On

15 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Preparation

Change to folder HandsOn/Stream
Use script ./build.intel_vec_report.sh to generate Intel
compiler vectorization report
Use script ./build.gnu_opt_report.sh to generate GCC
compiler vectorization report

Questions

Were Intel and GNU compiler able to vectorize the loops in the
functions tuned_STREAM_Copy, tuned_STREAM_Scale,
tuned_STREAM_Add and tuned_STREAM_Triad?
Why is the loop in tuned_STREAM_Copy (line 552) mentioned two
times in the Intel vectorization report?
Why is no peel loop needed for the loop in tuned_STREAM_Copy
(line 552)?



/usr/bin/time

16 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

No recompilation needed
⇒ Use your existing binary
Uses kernel resource usage info
Report time consumption

time spent in user space
time spent in kernel space
elapsed time

Report memory consumption
maximum resident size
Page faults

Report IO operations

Example
Comparison stream serial/parallel execution with time

../Trac/perf/wiki/Tools/time/example_stream.html


Hands On

17 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Preparation

Change to folder HandsOn/Stream
Use script ./build.sh to build stream benchmark
Use msub jobscript.time.msub to submit batch job

Questions

What is the difference between the two stream benchmark runs in
jobscript.time.msub?
Where can you see the difference in the output of /usr/bin/time?
What causes the high amount of system time?
Do memory consumption reported by stream benchmark and
/usr/bin/time match?



Application Performance Snapshot (APS)

18 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

No recompilation needed
⇒ Use your existing binary
But: Best compatibility with Intel
compiler and MPI
Uses MPI library instrumentation
Quick insight into

MPI
OpenMP
Memory access
Floating point
IO usage

Text and HTML report



Application Performance Snapshot (APS) (2)

19 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Usage serial or OpenMP binary

module add compiler/intel/18.0
source /opt/bwhpc/common/devel/aps/2018/apsvars.sh
aps ${BINARY}

Example

APS: stream
APS HTML report: stream

APS: dgemm
APS HTML report: dgemm

../Trac/perf/wiki/Tools/APS/example_stream.html
../examples/aps_stream/aps_report_20180327_141312.html
../Trac/perf/wiki/Tools/APS/example_dgemm.html
../examples/aps_dgemm/aps_report_20180327_165750.html


Application Performance Snapshot (3)

20 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Usage MPI binary

module add compiler/intel/18.0 \
mpi/impi/2018-intel-18.0

source /opt/bwhpc/common/devel/aps/2018/apsvars.sh
mpirun aps ${BINARY}

Example

APS: rank_league
APS HTML report: rank_league

../Trac/perf/wiki/Tools/APS/example_rank_league.html
../examples/aps_rank_league/aps_report_20180327_180934.html


Hands On

21 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Preparation

Change to folder HandsOn/Stream
Use script ./build.sh to build stream benchmark
Use msub jobscript.aps.msub to submit batch job
Repeat these steps in folder HandsOn/Dgemm and
HandsOn/Rank_league

Questions
What are the limiting factors for benchmark

stream?
dgemm?
rank_league?



Likwid Tools: likwid-perfctr

22 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Measures total program performance
No recompilation needed ⇒ Use your existing binary
Uses hardware performance counters
Uses sampling

Low overhead
Only statistical results

Performance groups simplify HW counters use
Important performance groups

FLOPS_AVX Packed AVX MFLOP/s
MEM Main memory bandwidth
NUMA Local and remote memory accesses



Likwid Tools: likwid-perfctr (2)

23 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Usage

likwid-perfctr -a # Available performance groups
likwid-perfctr -H -group

${GROUP} # Group information
likwid-perfctr -group ${GROUP} -C ${CPU_LIST}

${BINARY} # Measure

Example

likwid-perfctr: Performance group NUMA on benchmark stream
likwid-perfctr: Performance group FLOPS_AVX on benchmark
dgemm

../Trac/perf/wiki/Tools/likwid/example_perfctr_stream.html
../Trac/perf/wiki/Tools/likwid/example_perfctr_dgemm.html
../Trac/perf/wiki/Tools/likwid/example_perfctr_dgemm.html


Hands On

24 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Preparation

Get familiar with likwid-perfctr. Use
-h to get help
-a to list available performance groups
-H to get performance group help (e.g. for group NUMA)

Change to folder HandsOn/Stream
Use script ./build.sh to build stream benchmark
Use msub jobscript.perfctr.msub to submit batch job

Questions

What is the difference between the two stream benchmark runs in
jobscript.perfctr.msub?
Where can you see the difference in the output of stream benchmark
Where can you see the difference in the output of likwid-perfctr?



Likwid Tools: likwid-perfctr Marker API

25 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Measure partial program performance
Add likwid marker API to source code. Recompile.

likwid_markerInit Initialize likwid marker API
likwid_markerThreadInit Initialize each thread
likwid_markerStartRegion Start a measurement in named region
likwid_markerStoptRegion Stop a measurement in named region
likwid_markerClose Close likwid marker API

Example

Likwid marker API: stream
Likwid marker API: dgemm

../Trac/perf/wiki/Tools/likwid/example_marker_api_stream.html
../Trac/perf/wiki/Tools/likwid/example_marker_api_dgemm.html


Hands On

26 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Preparation

Compare stream source code in folders HandsOn/Stream and
HandsOn/Stream.likwid

Change to folder HandsOn/Stream.likwid
Use scripts ./build.gnu.sh and ./build.intel.sh to build
stream benchmark
Use msub jobscript.gnu.msub and msub
jobscript.intel.msub to submit batch jobs

Questions

Investigate region scale. Remember region scale should contain as
many reads as write operations. Why is the read volume

twice as high as the write volume when using GNU compiler?
equal to write volume when using Intel compiler?



perf tools

27 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Part of Linux kernel
No recompilation needed
⇒ Use your existing binary
Uses hardware performance counters
Uses sampling

Low overhead
Only statistical results

Find hot spots
(functions or code regions)
Record call graph
(with compiler flag -g)



perf tools (2)

28 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Usage

perf list # available HW counters
perf stat ${BINARY} # profile w. HW counters
perf record ${BINARY} # measurement -> perf.data
perf report # Hot spot report
perf annotate # Annotated assembler code

Example

perf: dgemm
perf: stream

../Trac/perf/wiki/Tools/perf/example_dgemm.html
../Trac/perf/wiki/Tools/perf/example_stream.html


Hands On

29 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Preparation

Get familiar with perf

Change to folder HandsOn/Stream
Use scripts ./build.debug.sh to build stream benchmark with
debug symbols
Use msub jobscript.perf.msub to submit batch job

Questions

What are the 4 hot spots of stream?
Navigate to tuned_STREAM_Triad

What assembler instructions are used?
Do they use vector registers?



Intel Trace Analyzer and Collector (ITAC)

30 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

No recompilation needed
⇒ Use your existing binary
Uses sampling

Low overhead
Only statistical results

Uses MPI library instrumentation
Collect non-statistical data
Communication pattern
Message sizes

Can use compiler instrumentation
Can cause significant overhead
Collect non-statistical data
Call graph



Intel Trace Analyzer and Collector (ITAC) (2)

31 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Graphical tool shows
Event timeline
Quantitative timeline
Function profile
Message profile

Usage

module add devel/itac/2018 # Prepare environment
mpirun -trace ${BINARY} # Execute MPI program
traceanalyzer ${BINARY}.stf # Analyze data

Example:
ITAC: MPI benchmark rank_league

../Trac/perf/wiki/Tools/itac/example_rank_league.html


Hands On

32 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Preparation

Change to folder HandsOn/Rank_league
Use scripts ./build.itac.sh to build rank_league benchmark
Use msub jobscript.itac.msub to submit batch job
Use traceanalyzer rank_league.stf to open trace file

Questions
What is shown in

Flat Profile?
Load Balance?
Call Tree?

What is shown in graphical tools
Event timeline?
Quantitative timeline?
Function profile?
Message profile?



References: Benchmarks

33 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

DGEMM benchmark from Sandia National Laboratories
http://www.nersc.gov/research-and-development/
apex/apex-benchmarks/dgemm/

Stream benchmark original version; John D. McCalpin
https://www.cs.virginia.edu/stream/

http://www.nersc.gov/research-and-development/apex/apex-benchmarks/dgemm/
http://www.nersc.gov/research-and-development/apex/apex-benchmarks/dgemm/
https://www.cs.virginia.edu/stream/


References: Performance Tools

34 Oct. 11, 2018 H. Obermaier - Performance Tools Steinbuch Centre for Computing (SCC)

Homepage: Application Performance Snapshot
https://software.intel.com/sites/products/
snapshots/application-snapshot/

Homepage: Intel Trace Analyzer and Collector
https:
//software.intel.com/en-us/intel-trace-analyzer

Github-page: Likwid
https://github.com/RRZE-HPC/likwid

Homepage: Time
https://directory.fsf.org/wiki/Time

https://software.intel.com/sites/products/snapshots/application-snapshot/
https://software.intel.com/sites/products/snapshots/application-snapshot/
https://software.intel.com/en-us/intel-trace-analyzer
https://software.intel.com/en-us/intel-trace-analyzer
https://github.com/RRZE-HPC/likwid
https://directory.fsf.org/wiki/Time

	Optimization cycle
	Tool Test Cases
	Likwid Tools: Overview
	Likwid Tools: likwid-topology
	Likwid Tools: likwid-bench
	Compiler Optimization Report
	/usr/bin/time
	Application Performance Snapshot (APS)
	Likwid Tools: likwid-perfctr
	Likwid Tools: likwid-perfctr Marker API
	perf tools
	Intel Trace Analyzer and Collector (ITAC)
	References

