
Conan2 based builds for CORSIKA8

A. Augusto Alves Jr

Presented at CORSIKA development meeting - KIT, Karlshuhe
June 20 - 2024

1/16

Recap: CORSIKA 8 build

CORSIKA 8 is basically a header-only framework which orchestrates a workflow involving a
collections of components to simulate particles cascades in material media.

• Components: modules, libraries and data.

• Different computing languages: C++, C, FORTRAN, Python.

• Most of these these components needs to be built ahead usage.

• Many direct and indirect dependences, with different building procedures.

Most of the complexity to build CORSIKA 8 comes from the management of dependencies.

2/16

Dependencies management: enters Conan

Conan is an open source, decentralized and multi-platform package manager to create and
share native binaries.

• CORSIKA 8 users are “encouraged” to use Conan to install the necessary dependencies.

• Actually, currently, Conan is “hard-coded” in CORSIKA 8.

• The CMake scripts, which build and install CORSIKA 8 components, search specifically for
packages installed via Conan.

• It is hardly satisfactory, since many of such packages are also available as system packages. It is
also hard to build CORSIKA 8 with an user-tuned package.

• This architecture defeats most of the flexibility provided by CMake to build different
configurations and promotes code bloating.

Currently, CORSIKA 8 build process requires Conan-1.X.Y series, which is now EOL.

3/16

Ideally...

Pretty simple:

• CORSIKA 8 should not care if a dependency was installed via Conan, some other package
manager, or even is provided by the system. Basically, CMake scripts in CORSIKA 8
should be agnostic about it.

This goal can not be achievable using Conan-1.X.Y. series, but Conan 2.X.Y series is fully
compliant with this strategy.

4/16

Conan-2

Conan-2 provides different tools to integrate with CMake in a transparent way. Using these
tools, the project CMakeLists.txt file does not need to be aware of Conan at all.

• CMakeDeps: responsible for generating the CMake configuration files
(<name>Config.cmake) for all the required dependencies. Examples: BoostConfig.cmake ,
Catch2Config.cmake ...

• CMakeToolchain: generates all the information needed for CMake to build the packages
according to the information passed to Conan about things like the operating system, the
compiler to use, architecture, etc.

• Python based recipes.

5/16

Integration into CORSIKA 8

Omitting implementation details, basically:

• As configured in the recipe (corsika/conanfile.py), Conan-2 will download, build and
install the required dependencies.

• It will also generate corresponding configuration files for CMake to find the packages and
store all it in locally created corsika/conan_cmake directory. This directory is on
.gitignore file.

• Once the directory corsika/conan_cmake exists and is populated, it is added to
CMAKE_MODULE_PATH in the COSIKA 8’s CMakeLists.txt , via definiton of the variable
CONAN_CMAKE_DIR .

• Before looking-up for configurations required by find_package(...) commands on
system-wide defined paths, CMake will consume what is on corsika/conan_cmake , and
then pick-up the packages installed by Conan-2.

6/16

Integration into CORSIKA 8

Two scripts manage the installation of the packages via Conan-2 and the configuration of
CORSIKA 8 for building and installation:

• conan-install.sh : It will invoke the Conan-2 commands to install the dependencies in
\$CONAN_HOME , generate the CMake tool-chain and configuration files, places it in the
corsika/conan_cmake directory and generate the CORSIKA 8 configuration script
corsika-cmake.sh .

• corsika-cmake.sh : It substitutes the conventional cmake .. command. It will emit the
correctly configured instructions with the paths and variables needed to activate the
Conan-2 integration. After this... make -jN .

7/16

Integration into CORSIKA 8: conan-install.sh --help

1
2 |---|
3 |-----------------[CORSIKA 8]---------------------|
4 |-----[CONAN2 DEPENDENCIES INSTALL SCRIPT]------- |
5 |---|
6 |-------------------- BEGIN ------------------------|
7
8 [conan-install | info > This script is located at the directory: <...>/corsika
9

10 Usage:./corsika/conan-install.sh options [parameters]
11
12 Options:
13 -s or --source-directory:
14 Corsika 8 download directory, which contains the 'conanfile.py' recipe. Default is the current directory.
15 -d or --debug:
16 Specify 'Debug' as build type for the installed dependences. This should be matched when building CORSIKA 8.
17 -r or --release:
18 Specify 'Release' as build type for the installed dependences. This should be matched when building CORSIKA 8.
19 -rd or --release-with-debug:
20 Specify 'RelWithDebInfo' as build type for the installed dependences. This should be matched when building CORSIKA 8.
21
22 Example: ./conan-install.sh --source-directory /some_path/corsika --debug
23 -h or --help:
24 Prints this message. 8/16

Integration into CORSIKA 8: corsika-cmake.sh --help

1 |---|
2 |-----------------[CORSIKA 8]---------------------|
3 |----------[CMAKE CONFIGURATION SCRIPT]---------- |
4 |---|
5 |-------------------- BEGIN ------------------------|
6
7 Usage: <...>/corsika/corsika-cmake.sh options [parameters]
8
9 Options:

10 -c or --cmake-flags:
11 Additional flags and settings to cmake base command. Default is empty string.
12
13 Example: ./corsika-cmake.sh --cmake-flags '-DUSE_Pythia8_C8=C8'
14
15 Note: the source directory (the one containing CMakeLists.txt),
16 CMAKE_BUILD_TYPE, CMAKE_POLICY_DEFAULT_CMP0091 and
17 CMAKE_TOOLCHAIN_FILE are already set. Do not repeat them.
18
19 -h or --help:
20 Prints this message.

9/16

Integration into CORSIKA 8: Comments

• The build type of the dependencies installed by Conan-2 and CORSIKA 8 have to match.

• Three build types available: Debug , Release and RelWithDebInfo .

• Using conanfile.py instead of conanfile.txt allows to solve version conflicts by forcing
one specific version. Practical, but dangerous.

• Mybe We should keep all dependencies updated to avoid major re-factories.

10/16

Dependencies: version updates

Package Master Branch Conan-2 Branch Intervention

Catch2 v2.13.8 v3.6.0 Code and CMakelists.txt

Spdlog v1.9.2 v1.14.1 "

BZip2 (not listed) v1.0.8 CMakelists.txt

Boost v1.78.0 v1.85.0 "

Eigen v3.3.8 v3.4.0 "

ZLib v1.2.13 v1.3.1 "

yaml-cpp v0.7.0 v0.8.0 "

cli11 v1.9.1 v1.9.1 "

Arrow v10.0.0 v16.1.0 "

Proposal v7.6.2 v7.6.2 "

11/16

Dependencies: version updates

• Catch2. Fix scope problems of some operators and functors. Catch2 is multi-header since
a while, so #include<catch/catch2.hpp> directives needed revision.

• Spdlog. Required implementation of some formatters for some specific types. A new
header was introduced to handle this:
corsika/detail/framework/core/SpdlogSpecializations.inl .

• *.inc are now produced at configuration time, instead of building time.

• corsika/cmake_conan directory is installed at lib/cmake/dependencies .

Note: No physics/math sensitive code was touched.

12/16

Conclusions, comments and perspectives

• Conan-2 has been integrated with Corsika 8 in a transparent and decoupled way.

• Work is done at branch conan2_cmake_building

• Version of several dependencies has been updated.

• CI related scripts/configurations have been updated.

• All tests are passing.

• Personally, I think we can safely pass to Conan-2 based builds, but I would recommend
some code review.

• Discuss our policy for dependency updates.

• Consider alternative package managers: vcpkg, spack.

13/16

https://gitlab.iap.kit.edu/AirShowerPhysics/corsika/-/tree/conan2_cmake_building?ref_type=heads

Backup Slides

CMakeLists.txt

1 if(DEFINED CONAN_CMAKE_DIR)
2 list(APPEND CMAKE_MODULE_PATH "${CONAN_CMAKE_DIR}")
3 endif(DEFINED CONAN_CMAKE_DIR)
4 ...
5 find_package(Boost COMPONENTS filesystem REQUIRED)
6 find_package(CLI11 REQUIRED)
7 find_package(Eigen3 REQUIRED)
8 find_package(spdlog REQUIRED)
9 find_package(yaml-cpp REQUIRED)

10 find_package(Arrow REQUIRED)
11 find_package(PROPOSAL REQUIRED)
12 find_package(BZip2 REQUIRED)
13 find_package(ZLIB REQUIRED)
14 find_package(Catch2 REQUIRED)
15 ...
16
17 target_link_libraries (
18 CORSIKA8
19 INTERFACE ZLIB::ZLIB BZip2::BZip2
20 Boost::filesystem CLI11::CLI11
21 Eigen3::Eigen spdlog::spdlog
22 yaml-cpp::yaml-cpp Parquet::parquet_static
23 PROPOSAL::PROPOSAL Catch2::Catch2WithMain cnpy
24)
25

15/16

Example of SpdLog formatter

1
2 namespace corsika {
3
4 template <typename Type>
5 auto inline format_as(Type const& arg) {
6 std::ostringstream os;
7 os << arg;
8 return os.str();
9 }

10
11 } // namespace corsika
12

16/16

