
A comparison of GPU offloading techniques

Holger Obermaier | 24 July 2024

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu


1. Overview
Example Program - GPU Offloading workflow

2. GPU offloading based on compiler pragmas
OpenMP (Open Multi-Processing)
OpenACC (Open Accelerators)

3. GPU offloading based on programming language extensions
C++ Standard Parallelism
SYCL
CUDA (Compute Unified Device Architecture)
HIP (Heterogeneous-Compute Interface for Portability)

4. GPU offloading based on libraries
OpenCL (Open Computing Language)
Kokkos

2/12 2024-07-24 H. Obermaier: A comparison of GPU offloading techniques Scientific Computing Center (SCC)



Why offloading to GPUs?
Dedicated fast memory (e.g. HBM)
Many parallel execution units
The majority of HoreKA’s computing power comes from GPUs

Many techniques for GPU offloading
Compiler pragmas
Programming language extensions
Libraries

No clear winner
Comparison based on

Usability, simplicity
Achievable performance
Supported compilers
Hardware portability

3/12 2024-07-24 H. Obermaier: A comparison of GPU offloading techniques Scientific Computing Center (SCC)

Overview



GPU Offloading workflow
Retrieve platform information
Allocate host memory
Pre-process / initialize data on the host (e.g. read data from storage)
Allocate device memory
Transfer data: Host memory → Device memory
Compute on the device
Transfer data: Device memory → Host memory
Free device memory
Post-process data on the host (e.g. write data to storage)
Free host memory

4/12 2024-07-24 H. Obermaier: A comparison of GPU offloading techniques Scientific Computing Center (SCC)

Example Program



Overview
Directive-based parallel programming model for C, C++ and Fortran
Originally only targeted shared-memory multiprocessing
GPU offload support added more recently
Managed by nonprofit corporation OpenMP Architecture Review Board

Supported Compilers
GCC
Intel oneAPI Compiler
LLVM
NVIDIA HPC SDK Compiler

Hardware portability
CPUs
AMD GPUs
Intel GPUs
NVIDIA GPUs

5/12 2024-07-24 H. Obermaier: A comparison of GPU offloading techniques Scientific Computing Center (SCC)

OpenMP (Open Multi-Processing)



Overview
Directive-based parallel programming model for C, C++ and Fortran
Launched before OpenMP provided GPU offloading support ⇒ Focus on accelerators
Many of the OpenACC concepts have since been incorporated into OpenMP
Managed by the nonprofit OpenACC Organization

Supported Compilers
GCC (OpenACC 2.6 from 2017)
NVIDIA HPC SDK Compiler

Hardware portability
CPUs
NVIDIA GPUs

6/12 2024-07-24 H. Obermaier: A comparison of GPU offloading techniques Scientific Computing Center (SCC)

OpenACC (Open Accelerators)



Overview
C++17 introduced parallel algorithms, extended in C++20

Includes parallel loops operations e.g. for_each and transform_reduce
Execution policies (seq, par) give compiler hints
Single source code for CPU and accelerator

No explicit data placement / device selection
Execution can be serial! Parallel execution on CPUs or GPUs needs compiler support

Supported Compilers
GCC (CPU only)
Intel oneAPI Compiler (CPU only)
LLVM (CPU only)
NVIDIA HPC SDK Compiler

Hardware portability
CPUs
NVIDIA GPUs

7/12 2024-07-24 H. Obermaier: A comparison of GPU offloading techniques Scientific Computing Center (SCC)

C++ Standard Parallelism



Overview
Higher-level programming model (APIs, ecosystem)
Provides APIs to find devices, to manage data resources and code execution on those
Standard C++, single source code for CPU and accelerator
SCYLomatic: CUDA to SYCL converter
developed by Khronos Group

Supported Compilers
Intel oneAPI Compiler

Hardware portability
CPUs
AMD GPUs (Codeplay Plugin)
Intel GPUs
NVIDIA GPUs (Codeplay Plugin)

8/12 2024-07-24 H. Obermaier: A comparison of GPU offloading techniques Scientific Computing Center (SCC)

SYCL



Overview
Collection of accelerated libraries and extensions for C, C++ and Fortran
Low-level programming model, full control on data placement and code execution
Kernels (device code) can not run on host CPUs
CUDA code is not C/C++/FORTRAN compliant ⇒ Compiling requires NVIDIA or LLVM compiler
Proprietary software, closed source
Available for a long time ⇒ Most probably market leader
Comprehensive solution (e.g cuBLAS, cuFFT)

Supported Compilers
LLVM
NVIDIA HPC SDK Compiler

Hardware portability
NVIDIA GPUs

9/12 2024-07-24 H. Obermaier: A comparison of GPU offloading techniques Scientific Computing Center (SCC)

CUDA (Compute Unified Device Architecture)



Overview
1 to 1 CUDA clone, e.g. cudaMalloc ⇒ hipMalloc
Not all CUDA features and libraries are available
hipify-clang / hipify-perl: LLVM / Regex based CUDA to HIP converter
Open source (MIT License)

Supported Compilers
AMD ROCm Compiler
LLVM

Hardware portability
AMD GPUs (ROCm backend)
NVIDIA GPUs (CUDA backend)

10/12 2024-07-24 H. Obermaier: A comparison of GPU offloading techniques Scientific Computing Center (SCC)

HIP (Heterogeneous-Compute Interf. for Portability)



Overview
OpenCL is a low-level programming framework
Full control on data placement and code execution
Support for multiple heterogeneous types of execution resources
Host code is written in C or C++, GPU code is written in OpenCL C (∼ C99)
Open standard maintained by non-profit technology consortium Khronos Group

Supported Compilers
All C, C++ compiler

Hardware portability
CPUs
AMD GPUs
Intel GPUs
NVIDIA GPUs

11/12 2024-07-24 H. Obermaier: A comparison of GPU offloading techniques Scientific Computing Center (SCC)

OpenCL (Open Computing Language)



Overview
Programming model in C++ for performance portable applications
Abstractions for both parallel code execution and data management
Open Source, Linux Foundation project

Supported Compilers
All C++ compiler

Hardware portability
CPUs (OpenMP backend)
AMD GPUs (HIP backend)
Intel GPUs (SYCL backend)
NVIDIA GPUs (CUDA backend)

12/12 2024-07-24 H. Obermaier: A comparison of GPU offloading techniques Scientific Computing Center (SCC)

Kokkos


	Overview
	Example Program - GPU Offloading workflow

	GPU offloading based on compiler pragmas
	OpenMP (Open Multi-Processing)
	OpenACC (Open Accelerators)

	GPU offloading based on programming language extensions
	C++ Standard Parallelism
	SYCL
	CUDA (Compute Unified Device Architecture)
	HIP (Heterogeneous-Compute Interface for Portability)

	GPU offloading based on libraries
	OpenCL (Open Computing Language)
	Kokkos


