KIT C

3 Scientific
Karlsruhe Institute of Technology Computing Center

A comparison of GPU offloading techniques

Holger Obermaier | 24 July 2024

N >
N N

KIT — The Research University in the Helmholtz Association WWW.kit.edu

https://www.kit.edu

1. Overview
a Example Program - GPU Offloading workflow

2. GPU offloading based on compiler pragmas
® OpenMP (Open Multi-Processing)
® OpenACC (Open Accelerators)

3. GPU offloading based on programming language extensions
C++ Standard Parallelism

SYCL

CUDA (Compute Unified Device Architecture)

HIP (Heterogeneous-Compute Interface for Portability)

4. GPU offloading based on libraries
® OpenCL (Open Computing Language)
a Kokkos

2/12 2024-07-24 H. Obermaier: A comparison of GPU offloading techniques Scientific Computing Center (SCC)

KIT

]
Overview

a Why offloading to GPUs?

® Dedicated fast memory (e.g. HBM)
u Many parallel execution units
a The majority of HoreKA's computing power comes from GPUs

a Many techniques for GPU offloading
a Compiler pragmas
® Programming language extensions
a Libraries

a No clear winner

a Comparison based on

Usability, simplicity

Achievable performance

Supported compilers

.
[
[
® Hardware portability

3/12 2024-07-24 H. Obermaier: A comparison of GPU offloading techniques Scientific Computing Center (SCC)

Example Program

GPU Offloading workflow

m Retrieve platform information

4/12

a Allocate host memory

Pre-process / initialize data on the host (e.g. read data from storage)

Allocate device memory

Transfer data: Host memory — Device memory

Compute on the device

Transfer data: Device memory — Host memory

Free device memory

Post-process data on the host (e.g. write data to storage)

Free host memory

2024-07-24

H. Obermaier: A comparison of GPU offloading techniques

KIT

Karlsruhe Institute of Technology

Scientific Computing Center (SCC)

OpenMP (Open Multi-Processing)

Overview

5/12

@ Directive-based parallel programming model for C, C++ and Fortran

a Originally only targeted shared-memory multiprocessing

a GPU offload support added more recently

® Managed by nonprofit corporation OpenMP Architecture Review Board

Supported Compilers Hardware portability

GCC

Intel oneAP| Compiler

LLVM

NVIDIA HPC SDK Compiler

2024-07-24

H. Obermaier: A comparison of GPU offloading techniques

a CPUs

a AMD GPUs

a |ntel GPUs

a NVIDIA GPUs

KIT

Karlsruhe Institute of Technology

Scientific Computing Center (SCC)

KIT

OpenACC (Open Accelerators)

Overview

@ Directive-based parallel programming model for C, C++ and Fortran

Launched before OpenMP provided GPU offloading support = Focus on accelerators
Many of the OpenACC concepts have since been incorporated into OpenMP

Managed by the nonprofit OpenACC Organization

Supported Compilers Hardware portability

® GCC (OpenACC 2.6 from 2017) = CPUs
= NVIDIA HPC SDK Compiler = NVIDIA GPUs

6/12 2024-07-24 H. Obermaier: A comparison of GPU offloading techniques Scientific Computing Center (SCC)

C++ Standard Parallelism ﬂIT

@ C++417 introduced parallel algorithms, extended in C4++20
® |ncludes parallel loops operations e.g. for_each and transform_reduce
® Execution policies (seq, par) give compiler hints
= Single source code for CPU and accelerator

® No explicit data placement / device selection

® Execution can be serial! Parallel execution on CPUs or GPUs needs compiler support

Supported Compilers Hardware portability

a GCC (CPU only) ® CPUs

® Intel oneAPI Compiler (CPU only) = NVIDIA GPUs
® LLVM (CPU only)

a NVIDIA HPC SDK Compiler

7/12 2024-07-24 H. Obermaier: A comparison of GPU offloading techniques Scientific Computing Center (SCC)

svel It

Karlsruhe Institute of Technology

Overview

® Higher-level programming model (APls, ecosystem)

a Provides APIs to find devices, to manage data resources and code execution on those
a Standard C++, single source code for CPU and accelerator

a SCYLomatic: CUDA to SYCL converter

a developed by Khronos Group

Supported Compilers Hardware portability

® Intel oneAPI Compiler a CPUs
= AMD GPUs (Codeplay Plugin)
a [ntel GPUs
= NVIDIA GPUs (Codeplay Plugin)

8/12 2024-07-24 H. Obermaier: A comparison of GPU offloading techniques Scientific Computing Center (SCC)

CUDA (Compute Unified Device Architecture) ﬂIT

a Collection of accelerated libraries and extensions for C, C++ and Fortran

Low-level programming model, full control on data placement and code execution

Kernels (device code) can not run on host CPUs

CUDA code is not C/C++/FORTRAN compliant = Compiling requires NVIDIA or LLVM compiler
Proprietary software, closed source

Available for a long time = Most probably market leader

Comprehensive solution (e.g cuBLAS, cuFFT)

Supported Compilers Hardware portability

a [LVM a NVIDIA GPUs
a NVIDIA HPC SDK Compiler

9/12 2024-07-24 H. Obermaier: A comparison of GPU offloading techniques Scientific Computing Center (SCC)

Ui

HIP (Heterogeneous-Compute Interf. for Portability)

Overview

® 1 to 1 CUDA clone, e.g. cudaMalloc = hipMalloc

® Not all CUDA features and libraries are available

® hipify-clang / hipify-perl: LLVM / Regex based CUDA to HIP converter
® Open source (MIT License)

Supported Compilers Hardware portability

® AMD ROCm Compiler = AMD GPUs (ROCm backend)
= LLVM = NVIDIA GPUs (CUDA backend)

10/12 2024-07-24 H. Obermaier: A comparison of GPU offloading techniques Scientific Computing Center (SCC)

KIT

OpenCL (Open Computing Language)

Overview

a OpenCL is a low-level programming framework

a Full control on data placement and code execution
® Support for multiple heterogeneous types of execution resources
® Host code is written in C or C++, GPU code is written in OpenCL C (~ C99)

a Open standard maintained by non-profit technology consortium Khronos Group

Supported Compilers Hardware portability

a All C, C++ compiler a CPUs
a AMD GPUs
a Intel GPUs
a NVIDIA GPUs

11/12 2024-07-24 H. Obermaier: A comparison of GPU offloading techniques Scientific Computing Center (SCC)

Kokkos ﬂ(IT

Karlsruhe Institute of Technology

® Programming model in C++ for performance portable applications

® Abstractions for both parallel code execution and data management

a Open Source, Linux Foundation project

Supported Compilers Hardware portability

® All C++ compiler ® CPUs (OpenMP backend)
= AMD GPUs (HIP backend)
® Intel GPUs (SYCL backend)
= NVIDIA GPUs (CUDA backend)

12/12 2024-07-24 H. Obermaier: A comparison of GPU offloading techniques Scientific Computing Center (SCC)

	Overview
	Example Program - GPU Offloading workflow

	GPU offloading based on compiler pragmas
	OpenMP (Open Multi-Processing)
	OpenACC (Open Accelerators)

	GPU offloading based on programming language extensions
	C++ Standard Parallelism
	SYCL
	CUDA (Compute Unified Device Architecture)
	HIP (Heterogeneous-Compute Interface for Portability)

	GPU offloading based on libraries
	OpenCL (Open Computing Language)
	Kokkos

