

Eisvogel and C8

Radio propagation through general media

Philipp Windischhofer, Christoph Welling, Cosmin Deaconu University of Chicago

windischhofer@uchicago.edu

July 4, 2024

An electrodynamically-correct radio propagation code for general, linear media

An electrodynamically-correct radio propagation code for general, linear media

An electrodynamically-correct radio propagation code for general, linear media

An electrodynamically-correct radio propagation code for general, linear media

C8 can simulate showers in very general media

Eisvogel can simulate radio signals in very general media

(E.g. wave-optics effects for in-ice neutrino observatories)

An electrodynamically-correct radio propagation code for general, linear media

Eisvogel can simulate radio signals in very general media

(E.g. wave-optics effects for in-ice neutrino observatories)

How does it work?

Isn't it hopeless to solve Maxwell's equations for large-scale geometries?

Convolution with shower is *fast*!

Calculation of complicated radiation propagation amortized into Green's function

How does it work in practice?

Green's function calculation ...

... and storage

Off-the-shelf numerical solvers for Maxwell's equations **applied to large-scale geometries**

Distributed-memory parallelism

Eisvogel interfaces with open-source solver *MEEP* [homepage] [code]

O(5 hours) on 128 cores, **O(100 GB)** disk space (300m cylindrical geometry, 1.2cm resolution)

Effectively a custom file system for large sparse arrays

(Green's function is "lookup table", \geq 10 TB when stored naively)

A Green's function for in-ice neutrino detectors

is extremely complicated!

Signals from neutrino-induced showers

10¹⁸ eV hadronic shower, 1-dim profile

A prototype C8 integration

Shower signal calculation

A prototype C8 integration

Shower signal calculation

Coming next: environment dump?

Questions from me / next steps

Any thoughts on the general structure of the Eisvogel integration?

Inheriting from ContinuousProcess instead of RadioProcess; new TimeDomainVoltageAntenna

Important outstanding feature: dump of environment to parseable file

(Found some discussion in a git issue; is anybody already working on it? If not, I'm happy to help.)

Build practicalities

(Eisvogel uses C++20, C8 uses C++17 \rightarrow build Eisvogel into .so, then link C8 against it)

Eventually, need to discuss "how" to include Eisvogel code into C8:

- → Build .so from source in separate build step (Conan?)
- → Alan: Include Eisvogel repository as submodule in C8?

https://github.com/eisvogel-project/Eisvogel

Summary

We can now calculate electrodynamically-correct radio signals in general media

Can test scenarios where ray-tracing does not apply

→ Should make this as easily-accessible as possible!

Have working prototype integration of Eisvogel in C8

Works if you know what you are doing ... but no guardrails yet!

Backup

"Deep" vs "shallow" antenna placement

Philipp Windischhofer

"Deep" vs "shallow" antenna placement

Philipp Windischhofer

Dependencies

ldd ./bin/c8_air_shower

linux-vdso.so.1 (0x00007ffd99579000)
librt.so.1 => /lib64/librt.so.1 (0x00007f4cb644d000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f4cb622d000)
libdl.so.2 => /lib64/libdl.so.2 (0x00007f4cb6029000)
libCONEXsibyll.so => /home/windischhofer/C8/corsika-build/lib/libCONEXsibyll.so (0x00007f4ca1729000)
libgfortran.so.5 => /project/software/gcc-13.2.0-e18-x86_64/lib64/libgfortran.so.5 (0x00007f4ca1253000)
libfluka.so => /home/windischhofer/C8/corsika-build/lib/libfluka.so (0x00007f4c97c89000)
libguadmath.so.0 => /project/software/gcc-13.2.0-e18-x86_64/lib64/libguadmath.so.0 (0x00007f4c97a43000)
libstdc++.so.6 => /project/software/gcc-13.2.0-e18-x86_64/lib64/libstdc++.so.6 (0x00007f4c97a43000)
libgcc_s.so.1 => /pib64/libm.so.6 (0x00007f4c96c76000)
libc.so.6 => /lib64/libc.so.6 (0x00007f4c96c76000)
libc.so.1 => /lib64/libc.so.1 (0x00007f4c96c55000)
libmvec.so.1 => /lib64/libmvec.so.1 (0x00007f4c96a4b000)

Only used to generate filenames → if problematic, can be substituted ldd libeisvogel-corsika.so linux-vdso.so.1 (0x00007ffd1c434000) libuuid.so.1 => /lib64/libuuid.so.1 (0x00007f97e53e4000) libtbb.so.2 => /lib64/libtbb.so.2 (0x00007f97e51a6000) libstdc++.so.6 => /lib64/libstdc++.so.6 (0x00007f97e4e11000) libm.so.6 => /lib64/libm.so.6 (0x00007f97e4a8f000) libgcc s.so.1 => /lib64/libgcc s.so.1 (0x00007f97e4877000) libc.so.6 => /lib64/libc.so.6 (0x00007f97e44b2000) /lib64/ld-linux-x86-64.so.2 (0x00007f97e5815000) Picked up through liberal usage of libdl.so.2 => /lib64/libdl.so.2 (0x00007f97e42ae000) libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f97e408e000) std::execution::unseq but not actually called into librt.so.1 => /lib64/librt.so.1 (0x00007f97e3e86000) \rightarrow can probably be avoided entirely

No "real" dependencies that are not already required for C8

Lorentz reciprocity

Classical electrodynamics has a built-in method to relate two different situations (with identical geometry)

General, linear material distribution: $\epsilon(\mathbf{x})$, $\mu(\mathbf{x})$, $\sigma(\mathbf{x})$

Lorentz reciprocity

Classical electrodynamics has a built-in method to relate two different situations (with identical geometry)

General, linear material distribution: $\epsilon(\mathbf{x})$, $\mu(\mathbf{x})$, $\sigma(\mathbf{x})$

Towards a general signal theorem

Use this "duality" to compute signal induced in detector

The "primal" situation:

Detector "signal" is voltage difference across terminals (measured along a specific path, $\nabla \times \mathbf{E} \neq 0$ in general!)

Towards a general signal theorem

Use this "duality" to compute signal induced in detector

The "dual" situation:

Current source attached to detector terminals: delta-like current applied along the signal-defining path

Towards a general signal theorem

Use this "duality" to compute signal induced in detector

$$\int_{V} \overline{\mathbf{E}}(\mathbf{x},\omega) \mathbf{J}^{e}(\mathbf{x},\omega) dV = \int_{V} \mathbf{E}(\mathbf{x},\omega) \overline{\mathbf{J}}^{e}(\mathbf{x},\omega) dV$$

$$V^{\text{ind}}(\omega) = \int_{\mathbf{x}_1, \, \mathcal{S}}^{\mathbf{x}_0} \mathbf{E}(\mathbf{x}, \omega) d\mathbf{s} = -\frac{1}{I_w(\omega)} \int_V \mathbf{E}_w(\mathbf{x}, \omega) \mathbf{J}^e(\mathbf{x}, \omega) dV$$

A fully general signal theorem

In the time-domain, this is

"Weighting field": Green's function for detector signal

Encodes information about detector geometry & environment; reciprocity defines concrete algorithm to compute it

Fully general, no approximations

holds exactly for all linear, anisotropic materials; approximately for nonlinear, anisotropic materials

The idea: reciprocity

Alice

Alice can see Bob ...

... if and only if Bob can see Alice

The idea: reciprocity

Electromagnetic "communication channels" are symmetric

The idea: reciprocity

Electromagnetic "communication channels" are symmetric

$$V_{\rm sig}(t) = \int dt' d^3x' \ \mathbf{K}(\mathbf{x}', t - t') \cdot \mathbf{J}_{\rm shower}(\mathbf{x}', t')$$

The electric field transmitted by the antenna is a Green's function for the received signal ...

... for all linear media (even anisotropic, frequency-dependent ones)

W. Riegler, PW, NIM A, 980, 164471 (2020)

Philipp Windischhofer

A reciprocal simulator

This makes fully-electrodynamic signal calculations possible!

Calculation of complicated radiation propagation amortized into Green's function

Comparison with ARZ

Comparison with ARZ (as implemented in NuRadioMC)

1-dim profile of electromagnetic shower developing in homogeneous medium with n = 1.78

Good agreement!