

Karlsruhe Institute of Technology

Institute of Functional Interfaces **Bioprocess Engineering and Biosystems** Ahmed Khalil Mama ahmed-khalil.mama@kit.edu





# **Digital Twins for Polymer-Based Resins**

# Ahmed Khalil Mama<sup>a</sup>, Tim Ballweg<sup>a</sup>, Modan Liu<sup>a</sup>, Wolfgang Wenzel<sup>b</sup>, Matthias Franzreb<sup>a</sup>

<sup>a</sup> Institute of Functional Interfaces, Karlsruhe Institute of Technology, <sup>b</sup> Institute of Nanotechnology, Karlsruhe Institute of Technology

### Introduction

- Liquid chromatography (LC) is widely used for purifying compounds, determining purity levels, and analyzing complex mixtures.
- Interaction between molecules and LC resins are not well understood and hard to predict.
- We present two novel workflows aimed at advancing the



understanding of molecular interactions in LC.

- introduce a virtual design approach to model a We commercial multi-modal chromatography (MMC) resin at atomic resolution, inclusive of its polymethacrylic backbone.
- Through binding free energy ( $\Delta G$ ) calculations with 10 linear peptides our model was able to predict Langmuir isotherm constants accurately.

Figure 1: Schematic overview of how LC operates. LC works by passing a liquid sample through a column (a) filled with a chromatography resin (b) and (c). The different molecules interact with the stationary phase based on their physical and chemical properties (d), leading to their separation (e).

### Workflows

#### Virtual Design of Methacrylate-Based Chromatography Resins

We developed a multistage modeling approach to generate all-atom resolution models of methacrylate-based chromatography resins, automated within the workflow management system (WMS) SimStack.



As a first example we virtually designed a MMC resin from Tosoh **Bioscience**:



Figure 2: SimStack Workflow - Beginning with user input for polymerization simulation at coarse-grain resolution, transitioning to all-atom resolution conversion, and culminating in MD relaxation.

Figure 3: Surface Model of the commercial resin TOYOPEARL MX-Trp-650M - Panel (a) displays the side view, and panel (b) offers a top view of the all-atom model. Panel (c) illustrates the chemical composition of the chromatography resin: Trp: Tryptophan as the ligand, EDGMA: Ethylene glycol dimethacrylate as the crosslinker and DHPMA: 2-hydroxypropyl methacrylate as the monomer.

#### **Computation of Binding Energies with Linear Peptides as Target Molecules**

This second workflow demonstrates a use case for our developed model by employing advanced computational methods to determine binding poses and free energies ( $\Delta G$ ) between target molecules and our custom all-atom resin surface model. Our computationally efficient approach enables rapid screenings suitable for standard office computers. We automated the entire multistep simulation using the KNIME workflow management system.

Figure 4: Flowchart of the simulation and data management steps involved in calculating binding energies with peptides.

Using this workflow, we calculated four distinct binding poses (Fig. 5) and corresponding  $\Delta G$  for 10 linear peptides selected as target molecules in this study.



Figure 5: Workflow Output - Four distinct binding poses of Octapeptide-2.

#### Validation

ocking gri ofadsorbe

structes

Peptide preparation

For experimental validation, we established a robotic lab to



### **Conclusion and Future Studies**

Output . aved Bindin

 $\checkmark$  We introduce and validate two innovative workflows for predicting peptide binding behaviors in multimodal chromatography.

high-throughput automate measurements of adsorption isotherms.

The obtained Langmuir constants  $(K_{\rm I})$ showed a strong logarithmic correlation with the previously calculated  $\Delta G$  values (Fig. 6), consistent

## with theoretical studies.



Semiempirica

 $\Delta G_{MM-GE}$ 

uantum mechanics

 $\Delta G_{GFN2-x}$ 

[1]: T. Ballweg, M. Liu, J. Grimm, E. Sedghamiz, W. Wenzel, M. Franzreb, All-atom modeling of methacrylate-based multi-modal chromatography resins for Langmuir constant prediction of peptides, J Chromatogr A 1730 (2024)

- ✓ The first workflow generates detailed all-atom models of methacrylate-based resin surfaces, including the polymer backbone.
- $\checkmark$  The second workflow enables rapid  $\Delta G$  calculations with linear peptides and effectively predicts experimental  $K_{\rm l}$  values.

#### Future Studies:

- > Introduce various chromatography ligands and validate them using the established workflow.
- $\succ$  Predict chromatography data for larger target compounds, including oligonucleotides, proteins, and antibodies.

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

