Reaction Kinetic Modeling of the Synthesis of Polymers of Intrinsic Microporosity

<u>F. Kandelhard¹, Silvio Neumann¹, K. Lützow², V. Filiz¹ & P. Georgopanos^{1,*}</u>

¹Helmholtz-Zentrum Hereon, Institute of Membrane Research ² Helmholtz-Zentrum Hereon, Institute of Functional Materials for Sustainability **Contact**: Felix.Kandelhard@hereon.de

Introduction

- Polymers of Intrinsic Microporosity (PIM) is a class of polymers with a high microporosity due to their highly rigid ladder structure
- PIM-1 was first synthesized by polycondensation more than 20 years ago. [1]
- While the synthesis procedure was optimized in many studies since than, it was never the investigated by using reaction kinetic modeling.
- This study presents a reaction kinetic modeling approach (with the software PREDICI) in combination with experimental methods such as reaction calorimetry, GPC and MALDI-TOF. [2]

The synthesis process consists of two major steps, the activation of the spirobisendane comonomer $P_{AA}(1)$ with K_2CO_3 (deprotonation) followed the typical polycondensation reactions steps with 2,3,5,6tetrafluoroterephtalonitrile (TFTPN) $P_{BB}(1)$ forming the growing PIM-1 polymer $P_{AB}(n)$. (Fig. 2)

1. Deprotonation

2. Polycondensation

Figure I: Synthesis in the calorimeter (A), samples taken after precipitation in water (B), and final product (C).

Model Performance

- Model includes the deprotonation step and the polycondensation kinetics including the formation of cyclic species.
- Parameter estimation of two reactions (Fig. 3A) coefficients [2]:

- $k_{AB} = 1.05 \cdot 10^{-2} \text{ L mol}^{-1} \text{ s}^{-1}$
- $k_{\rm cyclic} = 8.00 \cdot 10^{-2} \, {\rm s}^{-1}$
- The model can predict the evolution of the molar mass distribution over the course of the reaction (Fig. 3B).

Figure 3: Model performance. (A) Experimental and simulated evolution of \overline{M}_{W} . (B) Experimental and simulated evolution of the full molar mass distribution of R2. [2]

Analysis of the Polymer Formation

The product contains a low molar mass fraction consisting of mostly cyclic species (Fig. 4A). At the beginning of the reaction the product is a complex mixture of different species including underreacted ones (Fig. 4B).

The formation of cyclic species starts at later phases of the reaction.

Helmholtz-Zentrum Hereon • Max-Planck-Straße 1 • 21502 Geesthacht I Germany • T + 49 4152 87-0 • contact@hereon.de • www.hereon.de Contact: Dr. Prokopios Georgopanos • T +49 4152 87-2402 • prokopios.georgopanos@hereon.de