Criticality Assessment of Electrolyzer Materials: Supply Chain Sustainability and Vulnerabilities

Aloka Kumar Sahu^{1,2,3}, Sehun Seo¹, Thomas E. Rufford^{2,3}, Francesca M. Toma¹

¹ Institute of Functional Materials for Sustainbility, Helmholtz-Zentrum Hereon, Kantstraße 55, Teltow - 14513, Germany
² School of Chemical Engineering, The University of Queensland, Saint Lucia - 4067, Brisbane, Queensland, Australia
³ ARC Centre of Excellence for Green Electrochemical Transformation of CO₂, The University of Queensland, Saint Lucia - 4067, Brisbane, Queensland, Saint Lucia - 4067, Brisbane, Queensland, Saint Lucia - 4067, Brisbane, Queensland, Australia

Overview

As Power-to-X technologies drive the shift toward a sustainable economy, electrolyzer manufacturers face significant material challenges to keep pace with growing demand.

Supply Risks – Reserves, Extraction and Processing

The power-to-hydrogen sector, in particular, is expected to experience a sharp rise in electrolyzer demand, with projections of up to 1350 GW of installed capacity needed by 2050, compared to the current capacity of just ~18 GW. Given the reliance on key materials critical to the clean energy transition, manufacturers and governments must adapt their supply strategies to navigate a highly constrained global market and ensure continued business growth.

ALK – AlkalinePEM – Proton Exchange MembraneSOEC – Solid Oxide Electrolyzer CellAEM – Anion Exchange Membrane

Electrolyzers Have Several Mineral Requiements

Economic Vulnerabilities – Prices, Trends and Demand

	Future demand intensity of the materials (~2035)	Supply-side scarcity	Average price volatility (in last decade)
Zirconium	Stable ceramic market - Low	Important reserves and substitutes available - Low	~40% - High
Titanium	Electronic, desalination plants and prosthetic technologies - Low	Important reserves and substitutes available - Medium	~11% - LOW
Nickel	Massive increase in Lithium-ion batteries' demand - Extremely high	Important reserves and substitutes available - High	~26% - Medium
Yttrium	O ₂ sensors in autonomous cars - Medium	Concentrated and low reserves in unstable countries - Extremely high	~73% – Extremely high
Platinum	Fuel cells markets to skyrocket - High	Already low reserves balance and hard to extract - Extremely high	~25% - Medium
Iridium	Huge increase in demand for digital screens - High	Byproduct of platinum mining - Extremely high	~74% – Extremely high

Criticality Assessment – Material and Technology

Conclusion and Outlook

- Material substitution and reduction: Reducing material intensity and encouraging substitution can alleviate supply strains and lower costs.
- **Recycling:** Recycling helps ease pressure on primary supply sources, with governments promoting higher recycling rates to reduce import reliance.
- **Knowledge development:** Enhanced business intelligence in raw material supply chains is crucial for economic resilience and informed decision-making.
- **Diplomatic strategies:** Countries must explore new partnerships and strengthen existing relationships to secure and diversify future material supplies.

References

- 1. SIAPARTNERS, Electrolyzer materials: overall assessment of supply sustainability and vulnerabilities, Lorgeril et al., 2022.
- 2. IEA, The role of critical minerals in clean energy transition, 2021.
- 3. BRGM, USGS, European Commission, Kiemel et al. ,2018.
- 4. Recycling rate of metals, International Resource Panel, 2021.

Contact: Dr. Aloka kumar Sahu • Phone: +49 174 629 5377 • E-Mail: aloka.sahu@hereon.de Helmholtz-Zentrum Hereon • Kantstraße 1 • 14513 Teltow I Germany

