Nanofabrication of superconducting and ferromagnetic structures for operation in TEM

M. I. Faley¹, J. Thomsen¹, P.-H. Lu¹, J. V. Vas¹, D. Sutter², D. Biscette², A. Tavabi¹ and R. E. Dunin-Borkowski¹ ¹ER-C-1, Forschungszentrum Jülich, Jülich, Germany; ²condenZero AG, Zürich, Switzerland

Abstract

Nanoscale superconducting (Nb, TiN, NbN and BSCCO) and ferromagnetic Permalloy (Py) structures were prepared on $\sin A$, $\sin A$ and $\sin A$ membranes for experiments in a TEM. Exfoliated e-beam transparent BSCCO flakes were fixed on 4-contact chips to study correlations between temperature, electron transport properties and behavior of Abrikosov vortices. Metals Ti and Nb or nitrides TiN and NbN were combined into 3-layer heterostructures for adjusting superconducting parameters through the proximity effect. An on-chip thermometer was used also as a heater, allowing the sample temperature to be changed in the range from 400 K to 5 K and back in a few seconds. NanoSQUIDs with nanobridge Josephson junctions (nJJs) were prepared at a distance of below 200 nm from the tip of a cantilever by using bulk nanosculpturing of the substrate with a focused ion beam. The nanoSQUIDs had a sub-micrometer loop size, which limited the dimensions of the nJJs to below ~100 nm. Electron beam lithography and high selectivity reactive ion etching with pure SF_6 gas were used to pattern nJJs with a width down to 10 nm that is comparable to the coherence length in thin films of Nb and NbN and provides better reproducibility in the case of a Nb functional layer and better long term stability due to enhanced corrosion resistance in the case of NbN layer. A naturally created undercut in the Si substrate was used to prepare nanoSQUIDs on a 10-nm-thick $SiO₂$ membrane within 500 nm from the edge of the substrate. High-resolution TEM revealed that NbN films on SiN have a columnar structure while they observe cube-on-cube epitaxial growth on SiC membranes. Towards future realization of hybrid superconductor-ferromagnetic nanostructures for spintronics experiments in TEM, Py nanodisks and triangles with dimensions down to ~100 nm were prepared on SiN membranes and studied by Lorentz microscopy (LTEM) and electron holography TEM methods.

Using TEM with L-He⁴ cooled sample

system is determined mainly by the white noise input level √Sv∼1 nV/√Hz of the preamplifier at room temperature. The magnetic flux resolution of the present measurement system $\sqrt{S_{\Phi}} \approx \sqrt{S_{\nu}} / (\partial V / \partial \Phi) \sim 1.9 \mu \Phi_0 / \sqrt{Hz}$, where the derivative $\partial V/\partial \Phi \cong 525 \ \mu V/\Phi_0$. The magnetic field resolution $B_n = (\partial B/\partial F)VS_F \cong 12 \text{ nT/VHz}$ and the spin resolution $\sqrt{S_n} = (r/r_e) \sqrt{S_p} \approx 417 \mu_B/\sqrt{Hz}$, where $r_e =$ 2.82×10^{-15} m is the classical electron radius. Using a SQUID array preamplifier and a nanoSQUID of smaller size can improve the spin resolution to ~ 1 $\mu_{\rm B}/\text{VHz}$.

LTEM image of a 1 μ m Py disk [6] and a Py triangle.

SEM image of the corner of a Si chip after ∼1 hour of RIE in pure SF_6 gas at an RF power of 25 W [1].

SEM image of a nanoSQUID placed within a distance of 500 nm from the corner of a Si cantilever chip on a 10-nm-thick $SiO₂$ membrane [1].

The noise level of the nanoSQUID-based measurement

NanoSQUIDs on cantilevers and membranes

HRSEM image of a Si cantilever with a 4JJ nanoSQUID placed within 300 nm of the corner by FIB etching. The inset shows a top view of the same nanoSQUID cantilever [2].

Ferromagnetic films of Permalloy (Py) with Curie temperature $T_c \approx 500$ K.

Plan-view TEM images of a nanoSQUID fabricated on a SiN membrane: (a) low-magnification TEM image showing position of nanoSQUID relative to the edge of membrane; (b) a higher magnification TEM image showing microcrystalline structure of the membrane and a polycrystalline structure of the Ti-Nb-Ti heterostructure film; (c) a higher magnification TEM image of one of the nJJs demonstrating width of the nJJ and HSQ resist; and (d) high resolution TEM image of Ti-Nb-Ti heterostructure in nJJ in nanoSQUID showing the ∼0.3 nm interatomic distance corresponding to the lattice constant of Ti and Nb..

Fig. 11. *V(B)*-dependence of the planar nanoSQUID with NbN-TiN-NbN nJJs measured with a bias current of 39 µA at 4.2 K [2].

1. Faley M.I., Bikulov T., Bosboom V., Golubov A.A., Dunin-Borkowski R.E. *Superconductor Sci. Technol.*, **34** 035014 (2021). 2. Faley M.I., Dunin-Borkowski R.E. *Electronics*, **11**, 1704 (2022).

3. Faley M.I. *Encyclopedia of Condensed Matter Physics, 2e*, **2**, 702 (2024).

References

Working with liquid helium cooled TEM sample holder of the company "condenZero" [4] at ER-C-1 FZJ. The reached temperature of 4.4 K can be maintained for more than 24 hours.

Photo of NbSe₂ flake with 4 contact leads on a SiN membrane.

 $R(T)$ of NbSe₂ flake on a SiN membrane. B_{c2} (5K) = 1.5 T $\rightarrow \xi_0$ (flake) ~ 15 nm. λ_0 (bulk) ~ 500 nm.

LTEM and electron holography of Py nanodisks

Quantitative magnetic imaging of the Py nanodisk. In-plane magnetic induction maps detected at room temperature using electron holography at different external in-plane magnetic fields: 0 mT (left) and 33,5 mT (right). The in-plane magnetic fields were obtained by variation of magnetic fields of the objective lens and 16^o tilt of the sample. The contours outside the Py disks are mainly due to the presence of stray magnetic fields and the inhomogeneous electrostatic charge of the SiN membrane. [6]

4. https://condenzero.com/

5. Faley M.I., Williams J., Lu P.-H., Dunin-Borkowski R.E. *Electronics*, **12**, 2144 (2023).

6. Williams J., Faley M.I., Vas J.V., Lu P.-H., Dunin-Borkowski R. E. *Beilstein Journal of Nanotechnology*, **15**, 1 (2024)

Member of the Helmholtz Association

Py nanodots on SiN membranes

High-resolution TEM image of a small part of one of the Py nanodisks [2].

TEM image of a 60 nm thick Py disk with a diameter of ∼900 nm manufactured using lift-off with a bilayer resist [2].

LTEM image of array of 400 nm Py nanodisks [6].