

High resolution insights into structure and corrosion properties of Mg-Al-Ca composites

<u>Marta Lipińska-Chwałek^{1*}, Joshua Spille², Markus Felten³, Deborah Neuß⁴, Muhammad Zubair^{5,6},</u> Daniela Zander³, Marcus Hans⁴, Sandra Korte-Kerzel⁵, Joachim Mayer^{1, 2}

¹Forschungszentrum Jülich GmbH, Jülich (DE), Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, *m.lipinska@fz-juelich.de, ²⁻⁵ RWTH Aachen University, Aachen (DE): ²Central Facility for Electron Microscopy, ³Chair of Corrosion and Corrosion Protection, ⁴Materials Chemistry, ⁵Institute for Physical Metallurgy and Materials Physics,

Material motivation

Mg-AI-Ca composites with dual-phase microstructure:

- hexagonal close packed Mg matrix (soft)
- skeleton of strengthening C36 Laves phase (hard)

Why Ca addition in Mg-Al alloys?

- suppresses the formation of the Mg₁₇Al₁₂ phase (with a low thermal stability)
- **promotes** the formation of harder **Laves phases** (eg. C36) with a higher thermal stability [1]

M80

True Strain (%)

RT

140

130

110

100

170 °C

1200 48

Correlative STEM/EDX - APT investigation of the alloy nanostructure STEM/EDX STEM/EDX Scanning Transmission Electron HAADF HAADF Microscopy (STEM) with

Energy-Dispersive X-ray (EDX) spectroscopy revealed presence of Mg-rich nanoprecipitates and planar defects within the C36 Laves phase skeleton. By correlative application of Atom Probe Tomography (APT), the spatially-resolved composition was determined.

e 120

Maximum values for Mg enrichment measured in nanoprecipitates with the aid of STEM/ EDX approached 80 at.%. The APT analysis revealed their exact chemistry reaching 100 % of Mg and significant chemistry variations, not detectable by STEM!

STEM/EDX insights into the corrosion structure

Electrochemical corrosion resistance and the mechanisms underlying corrosion were in alkaline electrolyte investigated an (*pH=11.5±0.1*).

The C36 Laves phase containing Mg-rich nanoprecipitates exhibited lower dissolution kinetics than expected for pure C36.

The nm-scale Mg-rich precipitates might form a local stable quasipassive layer and reduce dissolution of C36 Laves phase.

> Mg-rich nanoprecipitates tend to inhibit the corrosion kinetics of investigated material.

Corrosion behavior of the Mg-Al-Ca alloy in an alkaline electrolyte (pH=11.5±0.1). The corrosion, front characterized by HR STEM, revealed varying oxide stabilities for the Mg matrix and the secondary phases.

^[1] Muhammad Zubair et al., Materials & Design 225 (2023), 111470