

5 November 2024

Materials Information Discovery

Materials Systems Engineering

Jan Korvink, Joachim Mayer Topic Spokespersons

HELMHOLTZ Information

Topic 5: Materials Information Discovery

Mission and Goals

What were the goals of the topic?

- Development of digital and correlative characterization platforms which will act as key enablers for future materials engineering
- A generic concept covering *in situ* and *operando* measurements and in-system combinations of methods will be developed
- Broad range of competences in methods and physical/life science applications
- Based on unique infrastructures: Ernst Ruska-Centre (ER-C) at FZJ
 Karlsrube Nano and Micro Eacility (KNME)

Evolution of the magnetisation with chiral tensor

[17]: Buckingham, Chem. Phys. Lett., 2004

[19]: Garbacz et. al., Phys. Chem. Chem. Phys., 2015

[19] S Wadhwa, D Buyens, JG Korvink, Advanced Materials, 2024

Chiral NMR experiment:

- 1. Magnetisation in the initial state
- 2. RF E₂ perturbation [17,18,19]
- 3. Magnetisation relaxation
- 4. Intensity/phase difference [19]

Chiral drugs are ubiquitous and ordered by enantiomer

halidomide	

Enantiomer	Eutomer (Good)	Distomer (Bad)
Thalidomide 🖻	Sedative	Teratogenic
Ethambutol [6]	Tuberculosis	Blindness
Penicillamin 🛛	Antiarthritic	Mutagen
Ketamin 🕫	Anesthatic	Hallucinogen

Ethambutol

Penicillamin

[5]: Vargesson, Birth Defects Res C Embryo Today, 2015.
[6]: Song et. al., Medicine, 2017.
[7]: Yang et. al., Analytic Chimica Acta, 2021.
[8]: Andrade C. The Journal of clinical psychiatry, 2017.

Thalidomide (Contergan) scandal

4D-STEM Diffraction Mapping

In-situ Electron Microscopy Institute of Materials Sciences TU Darmstadt

Methodology 4D-STEM – Simultaneous Structure & Function Analysis

Atomic Packing Strain Density Density variations in a Residual strain fields in a deformed metallic glass deformed metallic glass $\Delta \rho$ + 1%

Distribution

S. Kang et al., Advanced Materials, 2023, 35, 2212086

Electric Field GB in ferroelectric ceramic

500 nm

10 nm

Mean Inner Potential

GB in BTO

0.01 V D. Jennings et al., Acta Materialia, 2024, 273, 119941

In-situ Electron Microscopy Institute of Materials Sciences TU Darmstadt

-0.01 \

Structure and Segregation at Grain Boundaries

Anisotropic Segregation at Grain Boundary Sr_{1-x}Fe_xTiO₃

Position [nm]

9 11/7/2024 Prof. Dr. Christian Kübel

D. Jennings et al., Acta Mat., 2024, 273, 119941

In-situ Electron Microscopy Institute of Materials Sciences TU Darmstadt

Space Charge Layer at Grain Boundary

S. Kang et al., **2024**, in preparation

In-situ Electron Microscopy Institute of Materials Sciences TU Darmstadt

LiberTEM project

Live and interactive 4D STEM with **1 mio scan points per second** using the event-based CheeTah T3 camera by Amsterdam Scientific Instruments, LiberTEM-live and CEOS' Panta Rhei.

- Apply computationally intensive methods like AI to live data and large offline data
- Fast open source stream-oriented processing
- Interactive live processing with some of the fastest detectors currently available
- Decouples data source, user-defined implementation of an algorithm, execution engine and display of results
- Interoperability and re-use in different contexts
- Successful collaboration with many vendors
- <u>https://libertem.github.io/</u> for more information

- https://er-c-data.fz-juelich.de
- Use at CEA (Matthew Bryan)
- Versatile, modular, performant data management
- Standards-based interfaces
- User-friendly, familiar
- Easy collaboration
- Link storage with compute, metadata
 AI!
- Pilot in production use
- EU project EOSC Data Commons

Hopfions can be considered as closed twisted skyrmion strings that take the shape of a ring in the simplest case.

The complexity of the hopfion shape and size increases with the Hopf index *H*.

Magnetic hopfions in solids F N Rybakov, N S Kiselev, A B Borisov, L Döring, C Melcher, S Blügel APL Materials 10 (2022), 111113.

Coupled states of skyrmion strings and hopfions in FeGe plates of thickness 180 nm at 95 K

Hopfion rings in a cubic chiral magnet F Zheng, N S Kiselev, F N Rybakov, L Yang, W Shi, S Blügel and R E Dunin-Borkowski Nature 623 (2023), 718-723.

Hopfion rings in a cubic chiral magnet F Zheng, N S Kiselev, F N Rybakov, L Yang, W Shi, S Blügel and R E Dunin-Borkowski Nature 623 (2023), 718-723.

Simulations of $m_z = 0$ isosurfaces for hopfion rings with Q = -11 and -1. Left: hopfion ring alone. Right: semitransparent isosurfaces.

Hopfion rings in a cubic chiral magnet F Zheng, N S Kiselev, F N Rybakov, L Yang, W Shi, S Blügel and R E Dunin-Borkowski Nature 623 (2023), 718-723.

Single-particle averaging of cryo-ptychographic images

Küçükoğlu, B., ... **Sachse, C.**, Müller-Caspary, K., ... Stahlberg, H., *Low-dose cryo-...* (2024) Nat Commun 15, 8062. <u>https://doi.org/10.1038/s41467-024-52403-5</u>

European Research Council Established by the European Commission ERC Synergy grant: 4D-BioSTEM with Knut Müller Caspary and Henning Stahlberg

Mechanisms of membrane repair

 PspA rods show structural plasticity and remodel membranes

Junglas, Hudina ... C. Sachse, Structural plasticity of... (2024) Nat Struct Mol Biol. https://doi.org/10.1038/s41594-024-01359-7

 Vipp1's structural diversity on membranes, from carpets to helical tubes to single/stacked-ring assemblies is critical for membrane remodeling

Junglas et al., ... C. Sachse, Structural basis for Vipp1... (2024) Nat Struct Mol Biol. <u>https://doi.org/10.1038/s41594-024-01399-z</u>

A correlative workflow for cellular cryo-imaging

Berkamp, S. ... Sachse, C., 2023. Correlative Light and Electron... BIO-PROTOCOL 13. <u>https://doi.org/10.21769/BioProtoc.4901</u>

Berkamp: Poster on cryo-ET of biological cells in combination with EDX

Azad/Sundermeyer: Poster on workflow including PlasmaFIB (TFS Arctis)

CryoVIA - An image analysis toolkit for membrane structures

micrograp segmentation instances egmentation micrograph

Schönnenbeck: Poster on CryoVIA

- Al-assisted membrane segmentation
- Feature extraction
- Parameterization of membrane properties
- Shape analysis
- Quantitive automated analysis of 1000s of micrographs

Schönnenbeck, P. ... Sachse, C., CryoVIA - An image analysis toolkit for the quantification of membrane structures from cryo-EM micrographs (2024). *under review at Structure*

ER-C 2.0

RAFAL E. DUNIN-BORKOWSKI, JOACHIM MAYER, AND CARSTEN SACHSE

National user facility for highresolution electron microscopy

Call launched in summer of 2015

Bundesministerium für Bildung und Forschung

Roadmap für Forschungsinfrastrukturen

Pilotprojekt des BMBF

Mitglied der Helmholtz-Gemeinschaft

ER-C 2.0

Five Internationally unique Instruments

Science Physics Materials Life Science

TOMO:

TEM combined with an integrated atom probe

• OPERANDO:

Liquid-He cooled UHV-(S)TEM for *in situ* experiments

• FEMTO:

Dynamic in situ TEM with ps time resolution

• SPECTRO

Low Voltage (S)TEM with highest spectroscopic resolution

• BIO:

Biological TEM with Cc corrector, phase plate, energy filter, He cooling and single electron detector

atomic structure, electronic structure

TOMO: Basic Instrument Design

ER-C 2.0: TOMO instrument - overview

Thermo Fisher

TOMO column with components around octagon

Thermo Fisher

Jülich TOMO prototype

- Integrated APT on TEM
- Uncorrected 300 kV instrument
- Principal system component test
- Experimentation workflow test

First APT data on TOMO TEM – Aluminium Reference

Field free mode 630 x

CTEM 57 kx

Thermo Fisher

Intermittently evaporate the needle ...

CAMECA atom probe suite

... and observe in TEM mode

Compare to previous state:

- APT needle bias off
- Objective lens field on (constant current mode)

Thermo Fisher

ER-C 2.0 New Building

