Cosmic Rays Astroparticle Physics in Germany: Decadal Strategy Paper 2024

With input from Andreas Haungs, Tim Huege, Philipp Mertsch, Markus Risse, Günter Sigl and others

Markus Roth / Michael Schmelling

October 17, 2024

Studying the high-energy non-thermal universe

Physics questions addressed with charged particle CRs

- origin and acceleration of galactic and extragalactic cosmic rays
- combine in multi-messenger astrophysics with UHE neutrinos and photons
- Ultra-High Energy Cosmic Ray (UHECR) composition and the muon puzzle
- understanding of hadronic interactions
- mapping and understanding the CR anisotropy
- \succ search for BSM physics (e.g. Lorentz invariance violation)

Multi-messenger observations to get the full picture

independent measurements of different observables

simultaneous observation of different messengers

Ongoing and upcoming projects

- Pierre Auger/ Phase II
- GCOS
- GRAND
- IceCube/IceCube-gen2
- POEMMA
- SKA
- CORSIKA 8

Physics with charged cosmic ray particles

/	1	
:S ,		

Galactic cosmic rays

Extra-galactic 10^{11}

Act as messengers of the most extreme environments

Affect the formation and evolution of galaxies

Probe exotic physics

Above 10 PeV ... 1 EeV, extra-galactic sources dominate

Philipp Mertsch

Open questions

How can shocks accelerate up to (at least) a few PeV? What are the sources of high-energy e+: pulsar wind nebulae?

Extreme astrophysics

Galaxy evolution

Philipp Mertsch

Open questions (cont.)

What sources produce the observed anomalous abundances?

Galaxy evolution

Does AMS-02 see primordial anti-helium?

Extreme astrophysics

Exotic physics

Philipp Mertsch

Searching for PeV Photons from Galactic PeVatrons

- photons in the PeV range have been observed (LHAASO, HAWC) from galactic sources ("PeV y-sources")
- measure the UHE ($E \ge 10 \text{ PeV}$) luminosity and study acceleration mechanisms with air shower arrays

Energy spectra of four exemplary PeV γ-sources

no visible cutoff: extrapolate the power-law spectra to higher photon energies

[M. Niechciol, C. Papior, M. Risse, PoS (ICRC 2023) 557] [M. Niechciol, C. Papior, M. Risse, publication in preparation]

Integral number of photons $n_{ m \gamma}$ reaching Earth above threshold energy $E_{ m thr}$

Funded by

CRPropa study: interactions with cosmic background fields in the propagation small to negligible

Comparison to cosmic-ray flux: background suppression to a level of about 10⁻³ to 10⁻⁴ needed

Observing UHE photons from PeV y-sources seems challenging with current detectors.

Lowering the energy threshold and new dedicated detectors would be very useful.

> [M. Niechciol, C. Papior, M. Risse, PoS (ICRC 2023) 557] [M. Niechciol, C. Papior, M. Risse, publication in preparation]

Understanding the CR anisotropy

extragalactic UHECR propagation through 2 models of B-fields constrained by baryon distribution at z=60

Extragalactic magnetic field

Probing Lorentz violation with UHECR using air showers

Lorentz invariance violation can occur in models combining QM and gravity

- processes forbidden in the SM like photon decay or vacuum Cherenkov radiation
- effect of these processes on the development of an air shower in the atmosphere

most stringent limits on isotropic, nonbirefringend Lorentz violation in the photon sector from comparing MC with X_{max} data from the Pierre Auger Observatory

future: study correlation between X_{max} and N_{μ} as a function of A

expectations for proton and iron primaries

[F.R. Klinkhamer, M. Niechciol, M. Risse, Phys. Rev. D 96 (2017) 116011] [F. Duenkel, M. Niechciol, M. Risse, Phys. Rev. D 105 (2021) 015010] [F. Duenkel, M. Niechciol, M. Risse, Phys. Rev. D 107 (2023) 083004] [F. Duenkel, M. Niechciol, M. Risse, PoS (ICRC 2023) 217]

Hadronic interactions and the Muon Puzzle

Hadronic interactions are not well understood...

comparing measured and expected muon number

$$z = \frac{\ln \langle N_{\mu} \rangle - \ln \langle N_{\mu} \rangle_{p}^{MC}}{\ln \langle N_{\mu} \rangle_{Fe}^{MC} - \ln \langle N_{\mu} \rangle_{p}^{MC}} \qquad \qquad \blacktriangleright \text{ at h}$$

Astrophysics. Space Sci. 367(2022)3

igh energies all models predict too few muons

Modifying particle fractions and the modelling of the hard processes

S. Ostapchenko and G. Sigl, Phys. Rev. D 110 (2024) 063041 [arXiv:2409.05501]

muon number can increase by ~ 10% without contradicting accelerator data

all modification increase the tension with X_{max} from Pierre Auger data

muon deficit from cascade as a whole

study with CORSIKA 8 and new data

- ➡ p-O and O-O collisions at the LHC
- ➡ fixed target experiments (NA61/SHINE, LHCb)
- new forward physics facilities (FPF)

CORSIKA 8

Heidelberg 2022 workshop: 38 participants

- modern re-implementation of CORSIKA in C++
- focus on modularity and more flexibility **
- showers in inhomogenous media e.g. from air into ice •
- true community effort coordinated by KIT

Karlsruhe 2023 workshop: 23 participants on site, 20 via Zoom

Status

- state-of-the-art models for hadronic interactions:
 - QGSJETII-04, Sibyll 2.3d, EPOS-LHC, FLUKA, SOPHIA
 - cooperation with HEP community: inclusion of PYTHIA 8
- state-of the art model for e/m interactions: PROPOSAL
- radio-emission calculation included from the beginning
- **Cherenkov-light calculation included recently**
- extensive validation against CORSIKA 7 successful
- code is "physics-complete"
 - still needs improvements for end users
 - first "expert-level release" by end of 2024

comparison CORSIKA7 - CORSIKA 8

modelling of hadronic showers agrees at the 5-10% level

Cosmic ray experiments w/ German contribution

Pierre Auger Observatory Phase I - until 2021

All-particle cosmic ray spectrum at the highest energies

Phys. Rev. Lett. 125 (2020) 121106 Phys. Rev. D102 (2020) 062005 Eur. Phys. J. C81 (2021) 966

E [eV]

Uncertainty dominated by 14% sys. energy scale

Instep not compatible with source models dominated by single mass group (p, ..., Fe)

Improved composition analysis using Deep Neural Nets

 $\langle X_{\rm max} \rangle \propto \ln A + D \ln \frac{E}{E_0}$

Verification of ML analysis by MC

Relation between X_{max} and **A**

Depth X (g/cm^2)

result: breaks in composition which coincide with features of the spectrum

Pierre Auger Observatory Phase II

formal signing ceremony in November 2024

Radio: 1660 installed, 1180 running

Improve surface detectors to discriminate between e/m and muon component, and to measure zenith angles > 60 deg

- Scintillator Detector (SSD) < 60 deg
- Radio Detector (RD) > 60 deg

In addition: underground muon detector

Comparing SD and RD

- Recorded in April 2024
- SD and RD data well in agreement

	RD	SD
Azimuth (deg)	156.99±0.01	157±0.1
Zenith (deg)	84.7±0.01	84.7±0.1
Energy (EeV)	36.23 ± 3.34	38.55 ± 2.92
Core X (km)	-19.8	-17.40±0.88
Core Y (km)	-8.73	-9.78±0.45

GCOS - The Global Cosmic Ray Observatory

full-sky by 2 sites; 60.000 km² 20k layered WCDs; RD, FD high quality E and A at 30 EeV

2018 "Future" session at UHECR (Paris) 2021 1st GCOS workshop (online) 2022 2nd GCOS workshop (Wuppertal) 2023 3rd GCOS workshop (Brussels) two layered WCD prototypes running in Auger FAST (FD) prototypes running in Auger and TA **UHE WCD+RD detection at AugerPrime**

Auger >38EeV: (local) significances of -4.3 (dark blue) to +4.3 sigma

GRAND - Giant Radio Array for Neutrino Detection

Prototypes	Ρ	ro	to	ty	pes
------------	---	----	----	----	-----

autonomous radio detection

of very inclined air-showers

GRAND@Nançay: 4 antennas for

GRAND@Auger: 10 antennas for

HorizonAntennas over 200 km²

cosmic rays 10^{16.5-18} eV

• GRANDProto300: 13/300

trigger testing

cross-calibration

2023

2028

- discovery of EeV neutrinos for optimistic fluxes
- 2 GRAND sub-arrays
- 2x10,000 radio antennas over 2x10,000 km² in China + Argentina
- 13 M€ x2

Goals

Biggest challenge: pure, efficient and scalable radio self-trigger

Motivation for IceCube surface instrumentation

- veto downgoing neutrinos
- understanding atmospheric neutrinos and muons \bullet
- making IceCube a unique instrument also for air showers
- doing galactic multi-messenger astronomy
- Surface array of IceCube (IceTop)
 - 10¹⁵ eV 10^{17.5} eV EAS primary energy range
 - problem of non-uniform snow coverage increasing with time
 - small exposure for IceTop + in-ice coincidences

The Multi-Detector IceCube Surface Array Enhancement

- Operating IceTop (and IceCube) + scintillators within IceTop area + Radio antennas + Cherenkov light telescopes (IceACT)
- prototypes operating
- deployment delayed by logistic problems (Covid)
- German initiative (with Madison, Delaware)

IceCube-Gen2 Surface Array

station design

expected number of events/year

Scientific heritage: IceTop and Surface Enhancement Array in IceCube Solution with the second station of the second static s

The IceCube-Gen2 surface array will be a unique and needed cosmic ray detector in the PeV-EeV primary energy range!

sensitivity to cosmic ray anisotropy for 10 years IceCube-Gen2

IceCube-Gen2 Surface Array : Physics goals besides veto for neutrino astronomy

Rich physics program!

Not possible with only IceTop or

IceCube surface enhancement

POEMMA - Probe Of Extreme Multi-Messenger Astrophysics

* POEMMA

- 2 satellites with 4 m mirror,
- design study funded by NASA
- launch foreseen mid 2030ies
- detection of UHECR and neutrinos:
 - find sources of cosmic rays with energies > EeV
 - observe cosmic neutrinos with energies > 20 PeV

POEMMA, PoS (ICRC2023)1159

SPB-PBR: Super Pressure Ballon - POEMMA-Balloon with Radio

This setup allows for additional science cases and is a significant step towards space-based satellite configuration.

(1) Schmidt Optical Telescope with a Flourescence Camera (FC) and Cherenkov Camera (CC) on a combined focal surface as well as housing a Gamma Ray/X-ray detector and Infrared Camera.

(2) Low frequency radio instrument.

(3) NASA Rotation system: rotates in azimuth 360°

(4) Telescope rotation system: Nadir to $+13^{\circ}$ above horizon.

(5) 15 panel science solar array for recharging the battery system.

(6) Aspheric Corrector Plate to address spherical aberration

Scientific objectives

- first observations of UHECR from above with fluorescence light measurements
- measure high-altitude horizontal air-showers to probe the air-shower development at various stages
- search for Earth-skimming astrophysical neutrinos with PeV energies diffuse or from point sources

Flight (by NASA around Antarctica) foreseen in 2026

SKA - the Square Kilometer Array as a CR detector

- SKA-Low (Australia): >60,000 antennas in ~1 km² core
- **With a particle detector array as trigger, can measure** air showers with unprecedented precision at energies of 10 PeV and above
- **X**_{max} resolution <8 g/cm², potential to measure details of longitudinal profile, test hadronic interaction models
- potential to detect gamma-rays down to PeV energies

- strong HECP science working group: 48 members, 9 from Germany
- acquired ~2 MEUR third-party funding (Belgium, Netherlands, Germany)
- activities ramping up, close coordination with SKA management

Summary - overview of upcoming projects

Project	CRs	γ	ν
Auger Phase II	$> 100 \mathrm{PeV}$	$> 50 \mathrm{PeV}$	$> 10 \mathrm{PeV}$
GCOS	$> 10 \mathrm{EeV}$	$> 10 \mathrm{EeV}$	$> 10 \mathrm{EeV}$
GRAND	$(0.1\mathrm{PeV} ext{-}10\mathrm{PeV})$	$> 10 \mathrm{EeV}$	$> 100 \mathrm{PeV}$
IceCube-Gen2	$10{ m GeV}$ - $0.1{ m EeV}$	$0.1\mathrm{PeV} ext{-}1\mathrm{EeV}$	$10 \mathrm{TeV}$ - $1 \mathrm{EeV}$
POEMMA	$>20\mathrm{EeV}$		$> 20 \mathrm{PeV}$
SKA	$> 10 \mathrm{PeV}$	$> 1 \mathrm{PeV}$	
CTA		$0.02300\mathrm{TeV}$	
SWGO	$> 100 \mathrm{GeV}$	$> 100 \mathrm{GeV}$	

measure as many EAS observables as possible radio has become a crucial component

Summary - tentative timelines

