## Low-Energy Astrophysical Neutrinos

++ Michael Wurm, Achim Stahl ++ Astroparticle Physics in Germany ++ KIT, 17.10.24 ++

## Low Energy Astrophysical Neutrinos







#### $\rightarrow$ Astro-Neutrino-Properties Workshop in Mainz, 11.6.24

- How can neutrinos help to probe astrophysical sources?
- Can we combine observations with other messengers?
- What can we learn about neutrino properties?
- Which projects will contribute significantly?
- Where are new technological developments in the field?

## Low Energy Neutrinos: Sources & Physics Goals



**Cosmic Neutrino** ← yet undetected



Supernova neutrinos from neutron star cooling





**Geo-neutrinos** from Earth's radioactivity



Reactor neutrinos from nuclear fission



Beam neutrinos from pion decays



man-made but similar → types of detectors

Michael Wurm (JGU Mainz)

## Low Energy Neutrinos: Sources & Physics Goals



**Cosmic Neutrino** ← yet undetected

Solar neutrinos

from hydrogen burning



Supernova neutrinos from neutron star cooling



**Geo-neutrinos** from Earth's radioactivity



types of detectors

**Reactor neutrinos** from nuclear fission



**Beam neutrinos** from pion decays

neutron star cooling - Earth's heat budget . . .

- solar fusion

neutrinos as probes

astrophysical objects

- core-collapse and

to study interior of

neutrino properties from precision oscillation studies

- mass ordering
- leptonic CP violation
- PMNS unitarity
- non-standard interactions ....

Michael Wurm (JGU Mainz)

## **Key science questions for astrophysics**



#### **Supernova Neutrinos:** What can they tell us about core-collapse Supernovae?

- (proto) neutron star cooling and equation of state
- generation of heavy elements in the neutron-rich layers of the star
- cut-off of the neutrino signal due to black hole formation
- 'trigger' for GW detection and observation of common signal features (SASI)



DSNB: What is the rate of supernovae throughout the Universe?
discovery in SK-Gd and JUNO before the end of the decade
with 10 years of data: what is the fraction of black-hole forming SNe?



#### **Geoneutrinos:** What will we learn about the Earth with neutrinos?

- measurements in multiple locations helps understand crust and mantle contribution
  - → explore radiogenic heat budget and formation history of the Earth
- Earth inner structure can be adressed as well with atmospheric neutrino tomography



#### Solar neutrinos: What are the conditions in the core of the Sun?

- precision measurements of CNO/<sup>8</sup>B/<sup>7</sup>Be neutrinos to pin down solar metallicity
- precise pp-neutrino measurement to test solar luminosity constraint  $\rightarrow$  new particles?

## JUNO as an observatory for LE astro-neutrinos



- 20kt Liquid Scintillator Detector in Southern China
- reactor neutrino oscillation experiment
  - $\rightarrow$  sub-%-level precision on  $\theta_{12}$ ,  $\Delta m^2_{21}$
- $\rightarrow$  neutrino mass ordering
- designed for broad astro-v's program
  - $\rightarrow$  solar and geo-neutrinos
  - → galactic & diffuse SN neutrinos
  - $\rightarrow$  neutrinos from DM annihilation



#### **German contribution**

- six universities forming DFG Research Unit
- hardware work: scintillator radiopurity
   > pre-detector OSIRIS
- broad analysis contribution, based on experience from Borexino & Double-Chooz

## **Cross-relations with other experiments**





#### SNO+

(Kai Zuber, TU Dresden)

- ββ-experiment with Te-loaded LS
- currently: solar neutrinos

#### **Common Topic**

- SN neutrino burst
- different flavors, statistics, time & energy resolution
- multi-messenger, esp. GW signals



#### DARWIN

(many)

- SN neutrinos (v<sub>x</sub>)
- solar neutrinos, esp. pp



IceCube (many)SN neutrinos flux (envelope)



**DUNE** (Alfons Weber, JGU Mainz) SN neutrinos (v<sub>e</sub>)

**OSIRIS-Upgrade?** ■ precision pp-v's, ββ

## Precise CNO v measurement with directionality

- final result from Borexino on CNO neutrinos: based on spectral fit (as before) and novel directional fit
- CID method: use limited amount of Cherenkov photons, integrated over all events collected, to separate directional CNO signal from flat BG
- $\rightarrow$  demonstrates potential of hybrid Cherenkov/scintillation detection technique





18

16

#### Are we on the verge to detect Diffuse SN Neutrinos?



- Nu24: update from SK-Gd  $\rightarrow$  tension with BG-only but no clear signal yet
- major background by atmospheric neutrinos (NC+CC)
- similar background is expected for JUNO
  - $\rightarrow$  pulse shape discrimination essential!

SK-I

SK-II

SK-III SK-IV

SK-VI

SK-VII

Combined

 $^{2}$  DSNB flux [cm<sup>-2</sup>.s<sup>-1</sup>]

most recent JUNO sensitivity study suggests excellent performance

 $\rightarrow$  first observation within few years running?



## Key science questions for neutrino properties



Low energy neutrinos → mostly regards neutrino mixing/oscillations

#### **Key questions:**

- what is the neutrino mass ordering?
- how large is leptonic CP violation?
- what is the octant of  $\theta_{23}$ ?
- can we test PMNS unitarity?

Large thematical and technological overlap with adjacent fields of (astro-)particle physics:

- neutrino properties
- HE astrophysical neutrinos
- long baseline accelerator experiments  $\rightarrow$  KET

### What are the relevant experiments?



### Low-energy upgrades of neutrino telescopes

- IceCube-Upgrade, ORCA
- sensitive to mass ordering via matter effects of atmospheric neutrinos







Current & future long baseline experiments

■ T2K→H2K

DUNE

sensitive to δ<sub>CP</sub>
 (and mass ordering)



## **Neutrino Mass Ordering: Combined Analyses**



Michael Wurm (JGU Mainz)

## New R&D: Hybrid Cherenkov/Scintillator Detectors







- new types of water-based and slow (bi-solvent) scintillators
   R&D at German universities [arXiv:2405.05743] [arXiv:2405.01100]
- promise: excellent event reco & background suppression for
  - $\circ$  astrophysical & accelerator neutrinos: MeV $\rightarrow$ GeV
  - $\circ$   $0\nu\beta\beta$  searches with loaded scintillators (50t scale)
- coordinated development effort with US/UK groups
  - → currently ton-scale demonstrators: ANNIE, EOS, BNL-1T
- Iong-term goals: Theia-25 (DUNE-WbLS module?), JUNO-ββ







BNL Prototype ANNIE [arXiv:2312.09335] EOS

Michael Wurm (JGU Mainz)

## **New R&D: Opaque Scintillation Detectors**

- highly scattering scintillators with regular grid of WLS fibers for signal extraction
- promise: cm-scale spatial reconstruction
   → excellent particle ID based on topology
- areas of application
  - reactor and solar neutrinos
  - Ον2β searches with very high isotopeloading factors (transparency not crucial)
- currently 10-100 liter scale prototypes
- next years:
  - LiquidO cons. for generic R&D [arXiv:1908.02859]
     reactor monitoring with few-ton detector at Chooz (Amotech/CLOUD)
  - Mainz: ββ-demonstrator  $\rightarrow$  NuDoubt<sup>++ [arXiv:2407.05999]</sup>
- → both for hybrid and opaque scintillators: new European R&D Collaboration for Liquid Detectors (DRD2)



## Conclusions

- JUNO the main experiment in the field with substantial German participation
- unique sensitivity for astrophysical neutrinos (solar, SN v's, DSNB) and neutrino properties (mass ordering from sub-dom vacuum oscillations)
- important synergy effects with experiments in neighboring fields, e.g.
  - neutrino properties: high-energy neutrino telescopes for mass ordering, long baseline experiments on PMNS parameters
  - SN neutrinos: sensitivity for all neutrino flavors when combining large-scale detectors (also IceCube), added information from GW interferometers
- two novel efforts on detector R&D for hybrid and opaque scintillator detectors
  - $\rightarrow$  currently in the ton-scale demonstrator stage
  - $\rightarrow$  basis for the next generation of large-scale LE neutrino observatories

# Thank you!

AIN

0.0

Michael Wurm (JGU Mainz)

## **Current Status of OSIRIS Installation**





#### Electronics Cabinet

- humidity control now OK
- DCS&DAQ PCs installed, first versions running
- electronics for calibration and LHS sensors
- 2<sup>nd</sup> cabinet for LPMT electronics

#### **Top Clean Room**

- head tank for filling & hydrostatic pressure
- LS heater to maintain AV temperature gradient
- Automatic Calibration Unit (ACU) for radioactive source insertion

#### 🖶 Ground Clean Room

*(during installation)* main access for personnel and material

## **Pulse Shape Discrimination (PSD) in LS**



- example shown here for 11 MeV neutrons vs. 4 MeV gammas
- efficiency rises with energy/number of photons detected
- JUNO is a high light yield experiment!
   → expect ~1300 pe/MeV

- in liquid scintillators, pulse shapes (and light yield) of highly ionizing particles (n,p,α's) differs from light particles (e,γ's)
- can be exploited for discrimination,
   e.g. by tail-to-total ratio of time-of-flight corrected pulses



### Updated JUNO study with better PSD

#### Improved knowledge of pulse shapes



- 2022: state-of-the art modeling of NC final states and LS fluorescence parameters
- improved PSD techniques (radius-dep. Tail-to-Total, machine learning TMVA) promises excellent BG suppression
- atm.NC reactions with <sup>11</sup>C in final state are harder to discriminate by PSD but can be tagged based on delayed β<sup>+</sup>-decay



## **ANNIE Experiment**

Accelerator Neutrino Nucleus Interaction Experiment 27-ton (Gd-loaded) Water Cherenkov Detector running in the Fermilab BNB neutrino beam

- measurement of GeV neutrino differential cross-sections and neutron multiplicity
   *→ predict NC background rates for DSNB*
- physics data taking started in early 2021
- R&D program for new technologies
   → Gd-water → LAPPDs → WbLS

n





ANNIE Detector Layout



#### Fast light detectors: LAPPDs

For fast scintillators (e.g. WbLS), sub-ns time resolution will be crucial

#### Large-Area Picosecond Photo-Detectors:

- flat, large area (20cm x 20cm) detectors
- standard photocathode, MCP-based amplification
- time resolution: ~60 ps
- spatial resolution: <1cm</p>
- Manufactured by US company, Incom Inc.



#### Schematic of LAPPD



#### First SANDI deployment in March '23



#### WbLS (BNL): 0.5% organic fraction

#### Goals for first run:

- detect scintillation of hadrons
- use LAPPDs for C/S separation
- detect neutron capture on H
- show general compatibility for second run: SANDI filled with Gd-loaded WbLS





removed in May after taking 2 months worth of beam data



SANDI vessel & support frame inserted in Jan

Insertion of vessel inside ANNIE tank in March



#### NuDoubt<sup>++</sup> — Demonstrator for next-generation $0 u\beta\beta$ search

- Project: 100 kg-scale (isotope) demonstrator for ββ-search in advanced (opaque and/or hybrid) scintillator detector
- Physics goals for demonstrator phase
  - demonstrate background rejection capability required for nextgeneration 50-ton-scale (isotope) experiment  $\rightarrow$  meV  $\beta\beta$  mass
  - first measurement and spectroscopy of still unobserved  $2\nu EC\beta^+$  and  $2\nu 2\beta^+$  decays by pressurized  $^{78}$ Kr or  $^{124}$ Xe loading
- Time line
  - currently: R&D on basic scintillators (both opaque and hybrid) and pressurized noble gas loading
  - run with local 1t-demonstrator in Kupferberg Keller and/or upgrade existing OSIRIS setup (~2026)
  - two-year run with full loading in deep lab in 2029
- synergies with JUNO- $\beta\beta$ , Theia, LiquidO efforts





