Low-Energy Astrophysical Neutrinos

++ Michael Wurm, Achim Stahl ++ Astroparticle Physics in Germany ++ KIT, 17.10.24 ++

Low Energy Astrophysical Neutrinos

\rightarrow Astro-Neutrino-Properties Workshop in Mainz, 11.6.24

- How can neutrinos help to probe astrophysical sources?
- Can we combine observations with other messengers?
- What can we learn about neutrino properties?
- Which projects will contribute significantly?
- Where are new technological developments in the field?

Low Energy Neutrinos: Sources & Physics Goals

Cosmic Neutrino \leftarrow yet undetected

Supernova neutrinos from neutron star cooling

Reactor neutrinos from nuclear fission

man-made but similar \rightarrow types of detectors

Beam neutrinos from pion decays

Geo-neutrinos

from Earth's radioactivity

Low Energy Neutrinos: Sources & Physics Goals

Cosmic Neutrino \leftarrow yet undetected

Supernova neutrinos from neutron star cooling

Geo-neutrinos from Earth's radioactivity

Solar neutrinos

from hydrogen burning

types of detectors

Reactor neutrinos from nuclear fission

Beam neutrinos from pion decays

neutrinos as probes to study interior of

- astrophysical objects
- solar fusion
- core-collapse and neutron star cooling
- Earth's heat budget

neutrino properties from precision oscillation studies

 $\sim 10^{-1}$

- mass ordering
- leptonic CP violation
- PMNS unitarity
- non-standard interactions ...

Key science questions for astrophysics

Supernova Neutrinos: What can they tell us about core-collapse Supernovae?

- (proto) neutron star cooling and equation of state
- generation of heavy elements in the neutron-rich layers of the star
- cut-off of the neutrino signal due to black hole formation
- 'trigger' for GW detection and observation of common signal features (SASI)

DSNB: What is the rate of supernovae throughout the Universe? ■ discovery in SK-Gd and JUNO before the end of the decade ■ with 10 years of data: what is the fraction of black-hole forming SNe?

Geoneutrinos: What will we learn about the Earth with neutrinos?

- measurements in multiple locations helps understand crust and mantle contribution
	- \rightarrow explore radiogenic heat budget and formation history of the Earth
- Earth inner structure can be adressed as well with atmospheric neutrino tomography

Solar neutrinos: What are the conditions in the core of the Sun?

- **•** precision measurements of CNO/⁸B/⁷Be neutrinos to pin down solar metallicity
- **•** precise pp-neutrino measurement to test solar luminosity constraint \rightarrow new particles?

JUNO as an observatory for LE astro-neutrinos

- 20kt Liquid Scintillator Detector in Southern China
- reactor neutrino oscillation experiment
- \rightarrow sub-%-level precision on θ_{12} , Δm^2_{21}
- \rightarrow neutrino mass ordering
- designed for broad astro-v's program
	- \rightarrow solar and geo-neutrinos
	- \rightarrow galactic & diffuse SN neutrinos
	- \rightarrow neutrinos from DM annihilation

German contribution

- six universities forming DFG Research Unit
- hardware work: scintillator radiopurity \rightarrow pre-detector OSIRIS
- broad analysis contribution, based on experience from Borexino & Double-Chooz

Cross-relations with other experiments

SNO+

(Kai Zuber, TU Dresden)

- \blacksquare ββ-experiment with Te-loaded LS
- currently: solar neutrinos

Common Topic

- § SN neutrino burst
- different flavors, statistics, time & energy resolution
- § multi-messenger, esp. GW signals

DARWIN

(many)

- SN neutrinos (v_x)
- § solar neutrinos, esp. pp

IceCube (many) § SN neutrinos flux (envelope)

DUNE (Alfons Weber, JGU Mainz) SN neutrinos (v_{α})

OSIRIS-Upgrade? • precision pp-v's, $ββ$

Precise CNO measurement with directionality

- final result from Borexino on CNO neutrinos: based on spectral fit (as before) and novel directional fit
- CID method: use limited amount of Cherenkov photons, integrated over all events collected, to separate directional CNO signal from flat BG
- \rightarrow demonstrates potential of hybrid Cherenkov/scintillation detection technique

solar v's in Borexino

 $\overline{2}$

'n

 $+$ Best MC fit

 $+$ CID data

 \div Pure background MC

 -0.8 -0.6 -0.4 -0.2

3800

3750

3700

3650

3600 3550

3500 3450 3400

 $cos \alpha$

 N^{th} -Hits / 0.2

 $1^{\rm st}$ to $4^{\rm th}$]

18

16

10

12

14

8

 $CNO-\nu$ rate $[cpd/100$ tonnes]

Are we on the verge to detect Diffuse SN Neutrinos?

- **Nu24: update from SK-Gd** \rightarrow **tension with BG-only but no clear signal yet**
- major background by atmospheric neutrinos (NC+CC)
- similar background is expected for JUNO
	- \rightarrow pulse shape discrimination essential!
- most recent JUNO sensitivity study suggests excellent performance

 \rightarrow first observation within few years running?

Key science questions for neutrino properties

Low energy neutrinos à **mostly regards neutrino mixing/oscillations**

Key questions:

- what is the neutrino mass ordering?
- how large is leptonic CP violation?
- what is the octant of θ_{23} ?
- can we test PMNS unitarity?

Large thematical and technological overlap with adjacent fields of (astro-)particle physics:

- neutrino properties
- HE astrophysical neutrinos
- \blacksquare long baseline accelerator experiments \rightarrow KET

What are the relevant experiments?

Low-energy upgrades of neutrino telescopes

- IceCube-Upgrade, ORCA
- sensitive to mass ordering via matter effects of atmospheric neutrinos

PMNS matrix parameters and unitarity

Current & future long baseline experiments

 \blacktriangleright T2K \rightarrow H2K

§ DUNE

 \blacksquare sensitive to $\delta_{\texttt{CP}}$ (and mass ordering)

Neutrino Mass Ordering: Combined Analyses

New R&D: Hybrid Cherenkov/Scintillator Detectors

- co-detect intrinsic Cherenkov and scintillation signals using novel target media, light sensors & reconstruction techniques
- new types of water-based and slow (bi-solvent) scintillators à R&D at German universities [arXiv:2405.05743] [arXiv:2405.01100]
- promise: excellent event reco & background suppression for
	- \circ astrophysical & accelerator neutrinos: MeV \rightarrow GeV
	- o 0νββ searches with loaded scintillators (50t scale)
- coordinated development effort with US/UK groups
	- \rightarrow currently ton-scale demonstrators: **ANNIE**, EOS, BNL-1T
- § long-term goals: Theia-25 (DUNE-WbLS module?), JUNO-ββ

BNL Prototype ANNIE [arXiv:2312.09335] EOS

New R&D: Opaque Scintillation Detectors

- highly scattering scintillators with regular grid of WLS fibers for signal extraction
- § promise: cm-scale spatial reconstruction \rightarrow excellent particle ID based on topology
- areas of application
	- o reactor and solar neutrinos
	- o 0ν2β searches with very high isotopeloading factors (transparency not crucial)
- currently 10-100 liter scale prototypes
- next years:
	- o LiquidO cons. for generic R&D [arXiv:1908.02859] o reactor monitoring with few-ton detector at Chooz (Amotech/CLOUD)
	- o Mainz: ββ-demonstrator à NuDoubt++ [arXiv:2407.05999]
- \rightarrow both for hybrid and opaque scintillators: new **European R&D Collaboration** for Liquid Detectors (DRD2)

Conclusions

- JUNO the main experiment in the field with substantial German participation
- unique sensitivity for astrophysical neutrinos (solar, SN v's, DSNB) and neutrino properties (mass ordering from sub-dom vacuum oscillations)
- important synergy effects with experiments in neighboring fields, e.g.
	- o neutrino properties: high-energy neutrino telescopes for mass ordering, long baseline experiments on PMNS parameters
	- . SN neutrinos: sensitivity for all neutrino flavors when combining large-scale detectors (also IceCube), added information from GW interferometers
- two novel efforts on detector R&D for hybrid and opaque scintillator detectors
	- \rightarrow currently in the ton-scale demonstrator stage
	- \rightarrow basis for the next generation of large-scale LE neutrino observatories

Thank you!

SATA

 $\mathcal{P} \bullet \mathbb{C}$

Current Status of OSIRIS Installation

Electronics Cabinet

- **humidity control now OK**
- DCS&DAQ PCs installed,
	- first versions running
- \blacksquare electronics for calibration and LHS sensors
- 2nd cabinet for LPMT electronics

Top Clean Room

- § head tank for filling & hydrostatic pressure
- LS heater to maintain AV temperature gradient
- Automatic Calibration Unit (ACU) for radioactive source insertion

Ground Clean Room

(during installation) main access for personnel and material

Pulse Shape Discrimination (PSD) in LS

- example shown here for 11 MeV neutrons vs. 4 MeV gammas
- **efficiency rises with energy/number of** photons detected
- **JUNO** is a high light yield experiment! \rightarrow expect ~1300 pe/MeV
- in liquid scintillators, pulse shapes (and light yield) of highly ionizing particles (n,p,α's) differs from light particles (e,γ's)
- **can be exploited for discrimination,** e.g. by **tail-to-total ratio** of time-of-flight corrected pulses

Updated JUNO study with better PSD

Improved knowledge of pulse shapes

- **2022:** state-of-the art modeling of NC final states and LS fluorescence parameters
- improved PSD techniques (radius-dep. Tail-to-Total, machine learning TMVA) promises excellent BG suppression
- **atm. NC reactions with ¹¹C in final state are** harder to discriminate by PSD but can be tagged based on delayed β+-decay

ANNIE Experiment

Accelerator Neutrino Nucleus Interaction Experiment 27-ton (Gd-loaded) Water Cherenkov Detector running in the **Fermilab BNB neutrino beam**

- § measurement of GeV neutrino differential cross-sections and neutron multiplicity à *predict NC background rates for DSNB*
- § physics data taking started in early 2021
- R&D program for new technologies \rightarrow Gd-water \rightarrow LAPPDs \rightarrow WbLS ANNIE

n

Detector Layout

Fast light detectors: LAPPDs

For fast scintillators (e.g. WbLS), sub-ns time resolution will be crucial

Large-Area Picosecond Photo-Detectors:

- flat, large area (20cm x 20cm) detectors
- standard photocathode, MCP-based amplification
- time resolution: ~60 ps
- spatial resolution: <1cm
- Manufactured by US company, Incom Inc.

Schematic of LAPPD

First SANDI deployment in March '23

WbLS (BNL): 0.5% organic fraction

Goals for first run:

- detect scintillation of hadrons
- use LAPPDs for C/S separation
- detect neutron capture on H \bullet
- show general compatibility for second run: SANDI filled with **Gd-loaded WbLS**

removed in May after taking 2 months worth of beam data

SANDI vessel & support frame inserted in Jan

Insertion of vessel inside ANNIE tank in March

NuDoubt++ $-$ Demonstrator for next-generation $0\nu\beta\beta$ search

- Project: 100 kg-scale (isotope) demonstrator for $\beta\beta$ -search in advanced (opaque and/or hybrid) scintillator detector
- Physics goals for demonstrator phase
	- demonstrate background rejection capability required for nextgeneration 50-ton-scale (isotope) experiment \rightarrow meV $\beta\beta$ mass
	- first measurement and spectroscopy of still unobserved $2vEC\beta$ ⁺ and $2v2\beta$ ⁺ decays by pressurized ⁷⁸Kr or ¹²⁴Xe loading
- \cdot Time line
	- currently: R&D on basic scintillators (both opaque and hybrid) and pressurized noble gas loading
	- run with local 1t-demonstrator in Kupferberg Keller and/or upgrade existing OSIRIS setup (~2026)
	- two-year run with full loading in deep lab in 2029
- synergies with JUNO- $\beta\beta$, Theia, LiquidO efforts

event ID in hybrid Cherenkov/Scintillation detector

