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Low Energy Astrophysical Neutrinos
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à Astro-Neutrino-Properties Workshop in Mainz, 11.6.24
§ How can neutrinos help to probe astrophysical sources?
§ Can we combine observations with other messengers?
§ What can we learn about neutrino properties?
§ Which projects will contribute significantly?
§ Where are new technological developments in the field?



Low Energy Neutrinos: Sources & Physics Goals
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ß yet undetected

man-made but similar à
types of detectors



Low Energy Neutrinos: Sources & Physics Goals

Michael Wurm (JGU Mainz) Low Energy Astrophysical Neutrinos 4

ß yet undetected

man-made but similar à
types of detectors



Key science questions for astrophysics
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Supernova Neutrinos: What can they tell us about core-collapse Supernovae?
§ (proto) neutron star cooling and equation of state
§ generation of heavy elements in the neutron-rich layers of the star
§ cut-off of the neutrino signal due to black hole formation
§ ‘trigger‘ for GW detection and observation of common signal features (SASI)

DSNB: What is the rate of supernovae throughout the Universe?
§ discovery in SK-Gd and JUNO before the end of the decade
§ with 10 years of data: what is the fraction of black-hole forming SNe?

Solar neutrinos: What are the conditions in the core of the Sun?
§ precision measurements of CNO/8B/7Be neutrinos to pin down solar metallicity
§ precise pp-neutrino measurement to test solar luminosity constraint à new particles? 

Geoneutrinos: What will we learn about the Earth with neutrinos?
§ measurements in multiple locations helps understand crust and mantle contribution
à explore radiogenic heat budget and formation history of the Earth

§ Earth inner structure can be adressed as well with atmospheric neutrino tomography 



JUNO as an observatory for LE astro-neutrinos
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§ 20kt Liquid Scintillator Detector 
in Southern China

§ reactor neutrino oscillation experiment 
à sub-%-level precision on θ12, Δm2

21
à neutrino mass ordering

§ designed for broad astro-v‘s program
à solar and geo-neutrinos
à galactic & diffuse SN neutrinos
à neutrinos from DM annihilation

German contribution
§ six universities forming DFG Research Unit
§ hardware work: scintillator radiopurity
à pre-detector OSIRIS

§ broad analysis contribution, based on 
experience from Borexino & Double-Chooz

JUNO
O
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S

JUNO‘s signature of mass or-
dering in reactor v oscillations



Cross-relations with other experiments
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SNO+
(Kai Zuber, TU Dresden)
§ ββ-experiment with Te-loaded LS 
§ currently: solar neutrinos

JUNO

DUNE
(Alfons Weber, JGU Mainz)
§ SN neutrinos (νe)

DARWIN
(many)
§ SN neutrinos (νx)
§ solar neutrinos, esp. pp

OSIRIS-Upgrade?
§ precision pp-ν‘s, ββ

IceCube
(many)
§ SN neutrinos 

flux (envelope)

Common Topic
§ SN neutrino burst
§ different flavors,

statistics, time &
energy resolution

§ multi-messenger,
esp. GW signals



Precise CNO 𝛎 measurement with directionality
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§ final result from Borexino on CNO neutrinos:
based on spectral fit (as before) and novel directional fit

§ CID method: use limited amount of Cherenkov photons,
integrated over all events collected, 
to separate directional CNO signal from flat BG

à demonstrates potential of hybrid 
     Cherenkov/scintillation detection technique

Borexino 
electron 

recoil 
spectrum

Borexino directional distribution of PMT hits
Final Borexino result on CNO neutrinosDirectional signal of

solar v‘s in Borexino

[arXiv:2307.14636]



Are we on the verge to detect Diffuse SN Neutrinos?
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§ Nu24: update from SK-Gd à tension with BG-only but no clear signal yet 
§ major background by atmospheric neutrinos (NC+CC)
§ similar background is expected for JUNO 
à pulse shape discrimination essential!

§ most recent JUNO sensitivity study suggests excellent performance
     à first observation within few years running? 

2.3σ tension with 
background only

expected sensitivity of JUNO

[arXiv:2205.08830]

5σ

DSNB expectation

SK-Gd Neutrino24 result 



Key science questions for neutrino properties
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Low energy neutrinos 
à mostly regards neutrino mixing/oscillations

Key questions:
§ what is the neutrino mass ordering?
§ how large is leptonic CP violation?
§ what is the octant of θ23?
§ can we test PMNS unitarity?

Large thematical and technological overlap with 
adjacent fields of (astro-)particle physics:
§ neutrino properties
§ HE astrophysical neutrinos
§ long baseline accelerator experiments à KET



What are the relevant experiments?
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Current & future long 
baseline experiments
§ T2KàH2K
§ DUNE
§ sensitive to δCP

(and mass ordering)

Low-energy upgrades
of neutrino telescopes
§ IceCube-Upgrade, ORCA
§ sensitive to mass ordering

via matter effects of 
atmospheric neutrinos

PMNS matrix 
parameters
and unitarity



Neutrino Mass Ordering: Combined Analyses
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IceCube Upgrade
§ LE atmospheric v‘s
§ sensitivity arises from 

Earth matter effects

JUNO
§ medium BL reactor v‘s
§ sensitivity from 2nd order 

vacuum oscillations

à a similar study has been 
performed for JUNO+ORCA 
[arXiv:2108.06293]

§ combined oscillation analysis 
of the data produces tension 
in best-fit values of Δm2

31/32 
§ synergetic effect on mass 

ordering sensitivity 

à originally proposed 
by Blennow+Schwetz
[arXiv:1306.3988]

updated from
 

[arXiv:1911.06745]



New R&D: Hybrid Cherenkov/Scintillator Detectors
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§ co-detect intrinsic Cherenkov and scintillation signals using
novel target media, light sensors & reconstruction techniques

§ new types of water-based and slow (bi-solvent) scintillators
à R&D at German universities [arXiv:2405.05743] [arXiv:2405.01100]

§ promise: excellent event reco & background suppression for
o astrophysical & accelerator neutrinos: MeVàGeV
o 0νββ searches with loaded scintillators (50t scale)

§ coordinated development effort with US/UK groups
à currently ton-scale demonstrators: ANNIE, EOS, BNL-1T

§ long-term goals: Theia-25 (DUNE-WbLS module?), JUNO-ββ 
Scintons

Cherto
ns

Wavelength

Lab-Scale
Setups
CHESS
DISCO
....

Ton-Scale Setups

Future full-scale
hybrid detectors

BNL Prototype
ANNIE [arXiv:2312.09335]
EOS

Theia 25/100
[arXiv:1911.03501]

Timing



New R&D: Opaque Scintillation Detectors
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§ highly scattering scintillators with regular 
grid of WLS fibers for signal extraction

§ promise: cm-scale spatial reconstruction
à excellent particle ID based on topology

§ areas of application
o reactor and solar neutrinos
o 0ν2β searches with very high isotope-

loading factors (transparency not crucial)
§ currently 10-100 liter scale prototypes
§ next years: 
o LiquidO cons. for generic R&D [arXiv:1908.02859]

o reactor monitoring with few-ton detector
at Chooz (Amotech/CLOUD)

o Mainz: ββ-demonstrator à NuDoubt++ [arXiv:2407.05999]

à both for hybrid and opaque scintillators: new
     European R&D Collaboration for Liquid Detectors (DRD2)
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Conclusions
§ JUNO the main experiment in the field with substantial German participation

§ unique sensitivity for astrophysical neutrinos (solar, SN v‘s, DSNB) and 
neutrino properties (mass ordering from sub-dom vacuum oscillations)

§ important synergy effects with experiments in neighboring fields, e.g.
o neutrino properties: high-energy neutrino telescopes for mass ordering,

long baseline experiments on PMNS parameters
o SN neutrinos: sensitivity for all neutrino flavors when combining large-scale 

detectors (also IceCube), added information from GW interferometers

§ two novel efforts on detector R&D for hybrid and opaque scintillator detectors
à currently in the ton-scale demonstrator stage
à basis for the next generation of large-scale LE neutrino observatories
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Thank you!
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Current Status of OSIRIS Installation
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Stainless steel frame
§ 64x LPMTs + 26x GCUs
§ optical diffusers

for laser calibration
§ thermometer array
§ IR cameras

Muon veto
§ optical separation
§ 12x LPMTs
§ cold-water loop

Acrylic Vessel (AV)
§ pipes connected
§ flushed with N2
§ LS thermometer rod

feedthrough (seal)

Top Clean Room 
§ head tank for filling &

hydrostatic pressure
§ LS heater to maintain 

AV temperature gradient
§ Automatic Calibration

Unit (ACU) for radioactive
source insertion

Ground Clean Room 
(during installation)
main access for person-
nel and material

Electronics Cabinet
§ humidity control now OK
§ DCS&DAQ PCs installed,

first versions running
§ electronics for calibration

and LHS sensors
§ 2nd cabinet for LPMT electronics

OSIRIS
Liquid Handling System

Water Tank
§ CR class ISO6-7



Pulse Shape Discrimination (PSD) in LS
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e.g. Zim
m

er (2014)

Pulse Shapes of Gammas and Neutrons
§ in liquid scintillators,

pulse shapes (and light yield) of 
highly ionizing particles (n,p,α‘s) 
differs from light particles (e,γ‘s)

§ can be exploited for discrimination,
e.g. by tail-to-total ratio of
time-of-flight corrected pulses

γ
n

§ example shown here for 
11 MeV neutrons vs. 4 MeV gammas

§ efficiency rises with energy/number of 
photons detected

§ JUNO is a high light yield experiment!
à expect ~1300 pe/MeV

PSD performance vs. energy



Updated JUNO study with better PSD
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JU
N

O
 (2022)

§ 2022: state-of-the art modeling of NC final 
states and LS fluorescence parameters

§ improved PSD techniques (radius-dep. 
Tail-to-Total, machine learning TMVA)
promises excellent BG suppression

§ atm.NC reactions with 11C in final state are 
harder to discriminate by PSD but can be 
tagged based on delayed β+-decay

γ
Improved PSD performance

à substantially improved sensitivity!

DSNB

Improved knowledge of pulse shapes



ANNIE Experiment
Accelerator Neutrino Nucleus Interaction Experiment
27-ton (Gd-loaded) Water Cherenkov Detector 
running in the Fermilab BNB neutrino beam
§ measurement of GeV neutrino differential 

cross-sections and neutron multiplicity
à predict NC background rates for DSNB

§ physics data taking started in early 2021
§ R&D program for new technologies
à Gd-water à LAPPDs à WbLS

ANNIE 
Detector
Layout
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neutro
n

Gd

γ 

neutron capture time following beam events

τ	= 29±7 µs



Fast light detectors: LAPPDs
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Schematic of LAPPD

LAPPD test for ANNIE

For fast scintillators (e.g. WbLS), 
sub-ns time resolution will be crucial

Large-Area Picosecond Photo-Detectors:
§ flat, large area (20cm x 20cm) detectors
§ standard photocathode, MCP-based amplification
§ time resolution: ~60 ps
§ spatial resolution: <1cm
§ Manufactured by US company, Incom Inc.
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