### Probing the Shadows: A Search for Dark Photons (10-40 GeV) Using Scouting Data

Analysis review

Yusuf Seday 22/07/2024







Artwork Credit: DALL-E





### Table of Contents

- 1. Context and Analysis Strategy: Minimal Dark Photon Model
- 2. Event Selection and Efficiency Calculations
- 3. Signal and Background Modelling
- 4. Systematic Uncertainties
- 5. Expected Exclusion Limits
- 6. Conclusions





### 1) Minimal Dark Photon Model

#### •Minimal Dark Photon Model:

- •Extends the Standard Model (SM) with a new U(1) gauge symmetry in the dark sector.
- •Introduces a dark photon (Z') that interacts with SM particles via kinetic mixing.

#### •Kinetic Mixing:

- •Lagrangian term:  $\mathscr{L} \supset -\frac{\epsilon}{2}F_{\mu\nu}F^{\prime\mu\nu}$
- *e* is the kinetic mixing parameter allowing dark photon to couple to SM particles.

#### •Free Parameters:

- •Kinetic mixing parameter  $\epsilon$ .
- Dark photon mass  $m_{Z'}$
- •The decay branching fraction of the dark photon into invisible dark-sector final states, typically assumed to be either unity or zero (corresponding to whether any invisible dark-sector final states are kinematically allowed or not)<sup>†</sup>

#### •Experimental Signatures:

- Dark photons produced in collisions, decay into SM particles (e.g.,  $\mu^+\mu^-$ ).
- •Feynman diagram: dark photon (Z') mediating between quarks and leptons.

#### •Motivation:

- •Explains astrophysical and cosmological observations suggesting dark matter.
- •Dark photons as candidates for mediating interactions between dark matter and SM.









Yusuf Seday

### Dimuon Resonances

- Discovery of many new particles through the D resonant particle pair production in dimuon channel
- Search for a narrow dimuon resonance at low mass using scouting data recorded by the CMS
- Study the dimuon final states to test the minimal Dark Photon model
- Most recent results for the observed upper limits on the square of the kinetic mixing coefficient e





## Analysis Strategy

- •Investigating the existence of Dark Photons, a potential BSM mediator, within the 10-40 GeV range, through the decay into oppositely charged muon pairs, utilising scouting data from the CMS experiment
- •Optimising event selection for (prompt) dimuon resonance signals and efficiency calculations
- •Searching for a bump in the dimuon mass spectrum using analytical signal and background Pdfs
- •Study systematic uncertainties
- •Establish model-independent limits for the cross-section of lowmass dimuon resonant states





An expected production channel of a Dark Potion https://arxiv.org/pdf/2309.16003.pdf



## Employed Data

The datasets that are used in this analysis:

#### Observed Data

LHC Run 3, CMS Scouting Data: /ScoutingPFMonitor/Run202\*/RAW

#### •MC: Upsilon Samples

- Upsilonto2Mu\_UpsilonFilter\_2MuFilter\_TuneCP5\_13p6TeV\_pythia8 dataset
- Used to compare efficiencies around the Y region

#### •MC: DY Samples

- Privately produced samples
- Used for efficiency calculations



Yusuf Seday



### 2) Event Selection and Efficiency Calculations





### **Event Preselection**

•Muon pair with opposite charges as the final state

 Prompt Production Transverse Displacement: L < 0.2 cm

• Transverse Momentum:  $p_t > 4 \text{ GeV}$ 

• Pseudorapidity:  $|\eta| < 1.9$ 





 $p_t$  Distribution



#### **PVd Distribution**



 $\eta$  Distribution







## **Optimising the Event Selection**

- Focus: Optimisation of event selection within the 10-40 GeV mass range.
- •<u>Strategy</u>: Employing the Upsilon (Y) resonance as benchmark for optimising event selection through neural network training and efficiency analysis of simple cuts.
- Goal: Enhancing signal detection sensitivity for prompt dimuon events.
- •<u>Approach</u>: Comparison of neural network performance against traditional cut-based methods and refining the parameters for each case.





### Approach 1. Employing Neural Networks

i. Optimising the signal mass window ii. Choosing the variables for NN training iii. Choosing the optimiser algorithm iV. MVA analysis and MVA cut









### i) Optimising the Signal Mass Window

- Use all the candidate variables (will be optimised in the next slide)
- Use AUC for comparison





### The best response:

Mass Region 9.3 - 9.6 GeV AUC 0.87 Signal Contamination 84%

22/07/2024



### • Deploy several mass windows as signal region for the training and compare the ROC curves





### ii) Choosing the Training Variables

•Train with all the variables

•Modify the variable order according to importance

•Train with 1 variable and add the next one, repeat cumulatively

#### •Decide which variables to use

Used variables: "nmhits", "trkiso", "trkqoverp", "trklambda", "dxy", "ntklayers", "eta", "chi", "nphits"







### iii) Choosing the Optimiser Algorithm

### •Deploy several optimiser algorithms (SGD, Adam, Nadam...) • Compare the ROC curves



22/07/2024



Almost same AUCs, no visible improvement

Stick with SGD

Yusuf Seday



## iv) MVA Analysis and MVA Cut

features





22/07/2024



### • Re-weigh data to balance background and signal to prevent model bias in distinguishing





### •Add MVA using the best model's weights





As expected





Previously this was a problem



#### •Optimise the significance



22/07/2024





The maximum significance is 1012.13 for an MVA cut of > 0.015.



### •MuonID (1: pass, 0: fail) Efficiency with Tag'n Probe Fitting Method





22/07/2024

Signal Model:Voigtian Profile for each peakBackground Model:Bernstein Polynomial 1st order







Yusuf Seday



## MuonId Efficiency

- •Efficiencies for 2D (pT & dR) binnings
- •The total efficiencies are calculated by integrating these values
- •MC efficiencies for systematic uncertainties
- •Efficiency does not change significantly wrt mass and taken constant as ~0.892











### Approach 2. Traditional Cuts vs Training

i. Compare the results for track isolation (trkiso) ii. Compare the results for vertex displacement  $(L_{xy})$ 

22/07/2024



Only for the vertex variables



## i) Simple Cut vs Training: trkiso

- •Trkiso was used in the training for Run II data
- Exclude trkiso from the training, optimise the MVA cut, optimise the trkiso cut

•Compare the results

|                                         | Trkiso included | Trkiso excluded + trkiso cut |
|-----------------------------------------|-----------------|------------------------------|
| <b>Optimal significance</b>             | 6210.69         | 6009.85                      |
| Signal efficiency at optimal cut:       | 0.6764          | 0.8278                       |
| Background rejection at<br>optimal cut: | 0.8398          | 0.6293                       |



•Use the weights of the training <u>using track isolation</u>, optimise the MVA cut, observe the significance

### -> Including trkiso in the training is more effective!



## ii) Simple Cut vs Training: L<sub>xy</sub>







### •Ignore the MVA, optimise the $L_{xy}$ and Significance $(L_{xy}/\sigma_{xy})$ cuts



### Significance is higher with the MVA cut !



Max Significance after both cuts: 1072



## **Comparison of the Results**





|                                      | Lxy + Slxy Cut | MVA Cut |
|--------------------------------------|----------------|---------|
| <b>Optimal significance</b>          | 1072.85        | 1109.80 |
| Signal efficiency at<br>optimal cut: | 0.8500         | 0.8846  |
| Background rejection at optimal cut: | 0.5320         | 0.5263  |

22/07/2024



#### Vertexing Efficiency

| Data  | 0.850 |
|-------|-------|
| MC    | 0.925 |
| Ratio | 0.919 |



# Summary: Event Selection

- •Muon pair with opposite charges
- •Transverse Momentum:  $p_t > 4 \text{ GeV}$
- Pseudorapidity:  $|\eta| < 1.9$
- MVA Cut: MVA Score > 0.015
- MVA\_VTX Cut : MVA\_VTX > -0.02







### 3) Signal and Background Modelling





## i) Signal Modelling

#### **Tested Models:**

- Gaussian
- Voigtian
- dCB + Gaussian
- dCB + Voigtian (best model, also see Ludo's study)









## ii) Background Modelling

Discrete profiling method to vary the function choice.

The families of functions up for investigation using RooMultiPdf:

Bernstein Polynomial:  $B_n(x) = \sum_{n=1}^{n} \beta$ 

Polynomial times exponential:  $P_n$ 

• Sum of exponentials:  $E_n(x) = \sum_{n=1}^{n} a_n e^{c_n \cdot x}$ n=1

• Bernstein polynomial plus power



$$B_{v}b_{v,n}(x)$$
, where  $b_{v,n} = \binom{n}{v} x^{v}(1-x)^{n-v}$ 

$$f(x) = e^{c \cdot x} \sum_{n=1}^{n} \beta_n x^n$$

**law:** 
$$B_{Pn}(x) = fB_n(x) + (1 - f)x^a$$



### 4) Systematic Uncertainties





### Systematic Uncertainties

(i) On efficiency of data-driven selection

-Compare the efficiencies of MVA cut in Y region in data and MC (~6.9%)

(ii)On signal modelling

-Compare yields of model candidates -Negligible yield gap (~0.002)

(iii) On Luminosity (65.46 fb<sup>-1</sup>)

-Uncertainty ~ 2.3%

22/07/2024







 $\mu^+\mu^-$  invariant mass [GeV/c<sup>2</sup>







### 5) Exclusion Limits





### Expected limits with discrete profiling







### **Comparison with Run 2 results**







https://arxiv.org/abs/1912.04776



# Summary

#### Minimal Dark Photon Model

- Extends Standard Model with new U(1) gauge symmetry
- Introduces dark photon (Z') interacting with SM particles via kinetic mixing
- Free parameters: kinetic mixing parameter (ε), dark photon mass (mZ')
- Experimental signatures: dark photons decay into SM particles ( $\mu+\mu$ -)

#### CMS Run 3 Data and Scouting Trigger

- Utilized scouting trigger for data collection
- Analysis focused on 10-40 GeV mass range

#### Event Selection and Efficiency Calculations

- Muon pair with opposite charges, transverse momentum (pt > 4 GeV), pseudorapidity ( $|\eta| < 1.9$ )
- Neural network methods for MVA cut optimization
- Key variables: nmhits, trkiso, trkqoverp, trklambda, dxy, ntklayers, chi, nphits
- Efficiency calculated with Tag'n Probe fitting method



#### •Signal and Background Modelling

- Signal models: Gaussian, Voigtian, double Crystal Ball (dCB) + Gaussian, dCB + Voigtian (best) on multiple resonances within mass range
- Background models: Bernstein Polynomial, Polynomial times exponential, Sum of exponentials, Bernstein polynomial plus power law
- Discrete profiling method for background

#### •Systematic Uncertainties

- Data-driven selection efficiency: ~6.9%
- Signal modelling: Insignificant yield gap (~0.002)
- Luminosity uncertainty:  $\sim 2.3\%$  (65.46 fb<sup>-1</sup>)

#### • Exclusion Limits

- Based on 65.46 fb<sup>-1</sup> of data at 13.6 TeV (2022/2023)
- Limits constrain minimal dark photon model parameter space

Yusuf Seday







22/07/2024



# Thank You!



### Backup





CMS Muon Detectors

