Yusuf Seday 22/07/2024

Probing the Shadows: A Search for Dark Photons (10-40 GeV) Using Scouting Data

Analysis review

Artwork Credit: DALL-E

Table of Contents

- **1. Context and Analysis Strategy: Minimal Dark Photon Model**
- **2. Event Selection and Efficiency Calculations**
- **3. Signal and Background Modelling**
- **4. Systematic Uncertainties**
- **5. Expected Exclusion Limits**
- **6. Conclusions**

•**Minimal Dark Photon Model:**

- •Lagrangian term: ^ℒ [⊃] [−] *^ϵ* 2 $F_{\mu\nu}F^{'\mu\nu}$
- \bullet ϵ is the kinetic mixing parameter allowing dark photon to couple to SM particles.
- •Extends the Standard Model (SM) with a new U(1) gauge symmetry in the dark sector.
- •Introduces a dark photon (Z') that interacts with SM particles via kinetic mixing.

•Kinetic Mixing:

•Free Parameters:

- •Dark photons produced in collisions, decay into SM particles (e.g., $\mu^+\mu^-$).
- •Feynman diagram: dark photon (Z') mediating between quarks and leptons.
- **Kinetic mixing parameter** ϵ **.**
- •Dark photon mass $m_{Z'}$
- •The decay branching fraction of the dark photon into invisible dark-sector final states, typically assumed to be either unity or zero (corresponding to whether any invisible dark-sector final states are kinematically allowed or not) †

•Experimental Signatures:

•Motivation:

- •Explains astrophysical and cosmological observations suggesting dark matter.
- •Dark photons as candidates for mediating interactions between dark matter and SM.

1) Minimal Dark Photon Model

Dimuon Resonances

- **• Discovery of many new particles through the resonant particle pair production in dimuon channel**
- **• Search for a narrow dimuon resonance at low mass using scouting data recorded by the CMS**
- **• Study the dimuon final states to test the minimal Dark Photon model**
- **• Most recent results for the observed upper limits on the square of the kinetic mixing coefficient ε**

Analysis Strategy

- **•Investigating the existence of Dark Photons, a potential BSM mediator, within the 10-40 GeV range, through the decay into oppositely charged muon pairs, utilising scouting data from the CMS experiment**
- **•Optimising event selection for (prompt) dimuon resonance signals and efficiency calculations**
- **•Searching for a bump in the dimuon mass spectrum using analytical signal and background Pdfs**
- **•Study systematic uncertainties**
- **•Establish model-independent limits for the cross-section of lowmass dimuon resonant states**

An expected production channel of a Dark Potion <https://arxiv.org/pdf/2309.16003.pdf>

Yusuf Seday ⁶

Employed Data

The datasets that are used in this analysis:

•**Observed Data**

• LHC Run 3, CMS Scouting Data: /ScoutingPFMonitor/Run202*/RAW

•**MC: Upsilon Samples**

- Upsilonto2Mu_UpsilonFilter_2MuFilter_TuneCP5_13p6TeV_pythia8 dataset
- Used to compare efficiencies around the Y region

•**MC: DY Samples**

- Privately produced samples
- Used for efficiency calculations

2) Event Selection and Efficiency Calculations

Event Preselection

•Muon pair with opposite charges as the final state

• Transverse Momentum: $p_t > 4 GeV$

•Prompt Production Transverse Displacement: L < 0.2 cm

• Pseudorapidity: |η| < 1.9

PVd Distribution pt Distribution

 $\times 10^{3}$

 $120 \equiv$

η Distribution

Optimising the Event Selection

- **•Focus: Optimisation of event selection within the 10-40 GeV mass range.**
- **•Strategy: Employing the Upsilon (Υ) resonance as benchmark for optimising event selection through neural network training and efficiency analysis of simple cuts.**
- **•Goal: Enhancing signal detection sensitivity for prompt dimuon events.**
- **•Approach: Comparison of neural network performance against traditional cut-based methods and refining the parameters for each case.**

Approach 1. Employing Neural Networks

i. Optimising the signal mass window ii. Choosing the variables for NN training iii. Choosing the optimiser algorithm iV. MVA analysis and MVA cut

i) Optimising the Signal Mass Window

- •Use all the candidate variables (will be optimised in the next slide)
-
- •Use AUC for comparison

•Deploy several mass windows as signal region for the training and compare the ROC curves

The best response: Mass Region 9.3 - 9.6 GeV AUC 0.87 Signal Contamination 84%

ii) Choosing the Training Variables

•Train with all the variables

•Modify the variable order according to importance

•Train with 1 variable and add the next one, repeat cumulatively

•Decide which variables to use

Used variables: "nmhits", "trkiso", "trkqoverp", "trklambda", "dxy", "ntklayers", "eta", "chi", "nphits"

iii) Choosing the Optimiser Algorithm

•Deploy several optimiser algorithms (SGD, Adam, Nadam…) •Compare the ROC curves

Yusuf Seday

Stick with SGD

¹³ 22/07/2024

iv) MVA Analysis and MVA Cut

• Re-weigh data to balance background and signal to prevent model bias in distinguishing

features

•Add MVA using the best model's weights

As expected Previously this was a problem

•Optimise the significance

22/07/2024

The maximum significance is 1012.13 for an MVA cut of > 0.015.

Signal Model: Voigtian Profile for each peak Background Model: Bernstein Polynomial 1st order

•MuonID (1: pass, 0: fail) Efficiency with Tag'n Probe Fitting Method

MuonId Efficiency

- **•Efficiencies for 2D (pT & dR) binnings**
- **•The total efficiencies are calculated by integrating these values**
- **•MC efficiencies for systematic uncertainties**
- **•Efficiency does not change significantly wrt mass and taken constant as ~0.892**

Approach 2. Traditional Cuts vs Training

i. Compare the results for track isolation (trkiso) ii. Compare the results for vertex displacement (L_{xy})

Only for the vertex variables

i) Simple Cut vs Training: trkiso

•Use the weights of the training using track isolation, **optimise the MVA cut, observe the significance**

- **•Trkiso was used in the training for Run II data**
-
- **•Exclude trkiso from the training, optimise the MVA cut, optimise the trkiso cut**
- **•Compare the results**

-> Including trkiso in the training is more effective!

ii) Simple Cut vs Training: Lxy

•Ignore the MVA, optimise the Lxy and Significance (Lxy/σxy) cuts

Max Significance after both cuts: 1072

Significance is higher with the MVA cut !

Comparison of the Results

22/07/2024

Vertexing Efficiency

Summary: Event Selection

- **•Muon pair with opposite charges**
- **•Transverse Momentum: pt > 4 GeV**
- **Pseudorapidity: |η| < 1.9**
- **MVA Cut: MVA Score > 0.015**
- **MVA_VTX Cut : MVA_VTX > -0.02**

3) Signal and Background Modelling

i) Signal Modelling

- **• Gaussian**
- **• Voigtian**
- **• dCB + Gaussian**
- **• dCB + Voigtian (best model, also see Ludo's study)**

Tested Models:

ii) Background Modelling

Discrete profiling method to vary the function choice.

The families of functions up for investigation using RooMultiPdf:

• Bernstein Polynomial: $B_n(x) =$ *n* ∑ *v*=0

• **Polynomial times exponential:** $P_n(x) = e^{c \cdot x}$

• **Sum of exponentials:** $E_n(x) =$ *n* ∑ *n*=1

• Bernstein polynomial plus power

$$
\beta_{\nu}b_{\nu,n}(x), \text{ where } b_{\nu,n} = \binom{n}{\nu} x^{\nu}(1-x)^{n-\nu}
$$

$$
(x) = e^{c \cdot x} \sum_{n=1}^{n} \beta_n x^n
$$

 $a_n e^{c_n \cdot x}$

$$
law: B_{Pn}(x) = fB_n(x) + (1 - f)x^n
$$

-
-

4) Systematic Uncertainties

(i) On efficiency of data-driven selection

-Compare the efficiencies of MVA cut in Y region in data and MC (~6.9%)

(ii)On signal modelling

-Compare yields of model candidates -Negligible yield gap (~0.002)

(iii) On Luminosity (65.46 fb-1)

-Uncertainty ~ 2.3%

Systematic Uncertainties

5) Exclusion Limits

Expected limits with discrete profiling

Comparison with Run 2 results

<https://arxiv.org/abs/1912.04776>

Summary

• **Minimal Dark Photon Model**

- Extends Standard Model with new U(1) gauge symmetry
- Introduces dark photon (Z') interacting with SM particles via kinetic mixing
- Free parameters: kinetic mixing parameter (ε), dark photon mass (mZ')
- Experimental signatures: dark photons decay into SM particles (μ+μ-)

• **CMS Run 3 Data and Scouting Trigger**

- Utilized scouting trigger for data collection
- Analysis focused on 10-40 GeV mass range

• **Event Selection and Efficiency Calculations**

- Muon pair with opposite charges, transverse momentum (pt > 4 GeV), pseudorapidity (|η| < 1.9)
- Neural network methods for MVA cut optimization
- Key variables: nmhits, trkiso, trkqoverp, trklambda, dxy, ntklayers, chi, nphits
- Efficiency calculated with Tag'n Probe fitting method
- Based on 65.46 fb⁻¹ of data at 13.6 TeV (2022/2023)
- Limits constrain minimal dark photon model parameter space

•**Signal and Background Modelling**

- Signal models: Gaussian, Voigtian, double Crystal Ball (dCB) + Gaussian, dCB + Voigtian (best) on multiple resonances within mass range
- Background models: Bernstein Polynomial, Polynomial times exponential, Sum of exponentials, Bernstein polynomial plus power law
- Discrete profiling method for background

•Systematic Uncertainties

- Data-driven selection efficiency: ~6.9%
- Signal modelling: Insignificant yield gap (~0.002)
- Luminosity uncertainty: \sim 2.3% (65.46 fb⁻¹)

• **Exclusion Limits**

Thank You!

Backup

CMS Muon Detectors

