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Types of parallelism
• SIMD: Single instruction multiple data 

(Data Parallel)

• The same instruction is simultaneously 
applied on multiple data items 

• MIMD: Multiple instructions multiple data 
(Task Parallel)

• Different instructions on different data

• SPMD: Single program multiple data                      
(MPI Parallel)

• This is the message passing 
programming on distributed systems
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Shared vs distributed memory system

CPU

memory
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network

• Shared memory

• There is a unique address space shared 
between the processors

• All the processors can access the same 
memory

• Distributed memory

• Each processor has its own local memory

• Messages are exchanged between the 
processors to communicate the data
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What is high-performance computing (HPC)?
Leveraging distributed compute resources to solve complex problems with large 
datasets

▪ Terabytes to petabytes to zettabytes of data

▪ Results in minutes to hours instead of days or weeks

Submit job to 
the cluster 
manager

Get the result 
back to analyze Management 

services

Compute 
resources

Storage 
resources

Cluster manager runs 
workloads on distributed 
resources, such as CPUs, 

FPGAs, GPUs and disk drives 
all interconnected via 

network
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domain decomposition method for HPC
The domain decomposition is a technique for dividing a computational problem in 
several parts (domains) allowing to solve a large problem on the available resources

▪ Partition the data, assign them to each resource and associate the computation

▪ Communication happens to eventually exchange intermediate results

▪ Aggregate the results from the different resources
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Scaling aspects of distributed computing
▪ Strong scaling: how the time to solution changes by increasing the compute 

resources for a fixed total problem size
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▪ Weak scaling: how the time to solution changes by increasing the compute 
resource for a constant problem size per process
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How do we reduce the computational time?

CPU

memory

Number of training data set = 8 Epoch 1

Epoch 2

Epoch n

… …

We could use a strong scaling 
approach to reduce the time for all 
the epochs
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strong scaling on training set

CPU

memory

Number of training data set = 8 Epoch 1

Batch #1 Batch #2
Batch size = 4

CPU

memory

CPU

memory

We divide the dataset of 8 training 
samples into 2 batches of Batch size 4

Model will be updated after each 
batch of 4 samples

Going beyond reducing the Batch size 
and increasing the #CPUS (strong 
scaling) can cause a loose of 
performance in the model
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Strong and weak scaling on training set

CPU

memory

Number of training data set = 8 Epoch 1

Batch #1 Batch #2
Local Batch size = 4

CPU

memory

CPU

memory

We keep the same Batch size/CPU, 
increasing the overall Batch size

Global Batch size = 8

We update the model after the Global 
batch size is reached, reducing the 
number of iterations per epoch
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Message passing interface (MPI)
MPI is a standard which gets implemented in form of libraries for inter-process 
communication and data exchange.

Function categories:

▪ Point-to-point communication

▪ Collective communication

▪ Communicator topologies

▪ User-defined data types

▪ Utilities (for example, timing and initialization)
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From Prototype to Production

13

https://www.kaggle.com/pmarcelino/comprehensive-data-exploration-with-python

PERFORMANCE
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• Most Machine Learning tasks assume the data can be easily accessible, but:

• Data loading on a single machine can be a bottleneck in case of large 
amount of data

• To run production applications large memory systems is required (data not 
fitting in the local computer RAM)

• Traditional sequential algorithms are not suitable in case of distributed 
memory system

• Time to solution is critical on highly competitive market.

Why distributed ML/DL
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• Deep Learning training takes time:

• Computational complexity of DL training can be up to 100+ ExaFLOP (1 
ExaFLOP =1018 op);

• Typical single node performance is up-to tens of TeraFLOPS (1 TF = 1012

op/sec);

• Peak performance of most powerful HPC clusters is up-to tens of 
PetaFLOPS (1 PF = 1015 op/sec).

• Time to solution is critical on highly competitive market.

Why distributed ML/DL
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• Package created to address the needs of Data Scientists and Framework Designers to 
harness the Intel® Data Analytics Acceleration Library (DAAL) with a Pythonic API

• For scaling capabilities, daal4py also provides the ability to do distributed machine 
learning using Intel® MPI library

• daal4py operates in SPMD style (Single Program Multiple Data), which means your 
program is executed on several processes (e.g. similar to MPI) 

• The use of MPI is not required for daal4py’s SPMD-mode to work, all necessary 
communication and synchronization happens under the hood of daal4py

• It is possible to use daal4py and mpi4py in the same program

Daal4py: accelerated analytics tools
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Scaling Machine Learning Beyond a Single Node

scikit-learn daal4py

Try it out!  conda install -c intel daal4py

Simple Python API
Powers scikit-learn

Intel®
MPI

Powered by DAAL

Scalable to multiple nodes

Intel® Data Analytics Acceleration Library 
(Intel® DAAL) 

Intel® Math Kernel 
Library (MKL)

Intel® Threading 
Building Blocks (TBB)

17
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K-Means using daal4py 
import daal4py as d4p

# daal4py accepts data as CSV files, numpy arrays or pandas dataframes
# here we let daal4py load process-local data from csv files
data = "kmeans_dense.csv"

# Create algob object to compute initial centers
init = d4p.kmeans_init(10, method="plusPlusDense")
# compute initial centers
ires = init.compute(data)
# results can have multiple attributes, we need centroids
Centroids = ires.centroids
# compute initial centroids & kmeans clustering
result = d4p.kmeans(10).compute(data, centroids)

18
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Distributed K-Means using daal4py
import daal4py as d4p

# initialize distributed execution environment
d4p.daalinit()

# daal4py accepts data as CSV files, numpy arrays or pandas dataframes
# here we let daal4py load process-local data from csv files
data = "kmeans_dense_{}.csv".format(d4p.my_procid())

# compute initial centroids & kmeans clustering
init = d4p.kmeans_init(10, method="plusPlusDense", distributed=True)
centroids = init.compute(data).centroids
result = d4p.kmeans(10, distributed=True).compute(data, centroids)

mpirun -n 4 python ./kmeans.py

19
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Strong & Weak Scaling via daal4py
Hardware

Intel(R) Xeon(R) Gold 6148 CPU @ 
2.40GHz, EIST/Turbo on

2 sockets, 20 Cores per socket

192 GB RAM

16 nodes connected with Infiniband

Operating 
System

Oracle Linux Server release 7.4

Data Type double

On a 32-node cluster (1280 cores) daal4py computed K-
Means (10 clusters) of 1.12 TB of data in 107.4 seconds and 
35.76 GB of data in 4.8 seconds.

On a 32-node cluster (1280 cores) daal4py computed linear 
regression of 2.15 TB of data in 1.18 seconds and 68.66 GB 
of data in less than 48 milliseconds.

20
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Distributed K-Means using daal4py

22

1) Performs a pixel-wise Vector Quantization (VQ) using K-Means

2) Implemented the domain decomposition according to:

▪ d4p.num_procs()

▪ d4p.my_procid()

3) Using the distributed algorithm from Daal4Py

▪ d4p.kmeans_init(n_colors, method="plusPlusDense", 

distributed=True)

4) What is the meaning of d4p.daalinit() &  d4p.daalfini()?

5) How does threading compare to multiprocessing in terms of performance?
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Distributed K-Means Summary

23

• Each process (MPI rank) get’s a 
different chunk of data

• Only process #0 reports results

• Inference is using the same 
routines as training with 0
maximum iterations and centroid 
assignment

• There is no oversubscription since 
DAAL only sees the cores 
“owned” by the corresponding 
MPI rank
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• Forward propagation: calculate loss function based on the input batch and 
current weights;

• Backward propagation: calculate error gradients w.r.t. weights for all layers 
(using chain rule);

• Weights update: use gradients to update weights; there are different 
algorithms exist - vanilla SGD, Momentum, Adam, etc.

SGD: 𝑊𝑛
∗ = 𝑊𝑛 − 𝛼 ∗ 𝜕𝐸/𝜕𝑊𝑛 or variants

deep learning Training procedure
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Parallelism options

Fully connected layer

K M

WI O

Several options for parallelization

K
 =

 3

N
 =

 2

M = 4
K = 3

N
 =

 2

M = 4

𝑾 ∈ 𝑹𝑲𝒙𝑴

Weights 
or model

𝑰 ∈ 𝑹𝑵𝒙𝑲

Input
𝑶 ∈ 𝑹𝑵𝒙𝑴

Output
or activations  
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Neural network parallelism

Data is processed in increments of N.      
Work on minibatch samples and 
distributed among the available resources.

The work is divided according to the 
neurons in each layer. The sample 
minibatch is copied to all processors 
which compute part of the DNN.

source: https://arxiv.org/pdf/1802.09941.pdf
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• Data parallelism:

• Replicate the model across nodes;

• Feed each node with its own batch of 
input data;

• Communication for gradients is required 
to get their average across nodes;

• Can be either 

• AllReduce pattern 

• ReduceScatter + AllGather patterns

Multi-node parallelization
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Data parallelism

Multi node
Data Parallelism

Single node
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• Model parallelism:

• Model is split across nodes;

• Feed each node with the same batch of input data;

• Communication for partial activations is required to gather the result;

Multi-node parallelization
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• What parallelism flavor to use?

• Use model parallelism when volume of gradients is much higher than 
volume of activations or when model doesn’t fit memory;

• Use data parallelism otherwise;

• Parallelism choice affects activations/gradients ratio

• Data parallelism at scale makes activations << weights

• Model parallelism at scale makes weights << activations

• There’re also other parallelism flavors – pipelined, spatial, etc.

Multi-node parallelization
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Distributed Deep Leaning Requirements:

✓Compute/communication overlap
✓Choosing optimal communication algorithm
✓Prioritizing latency-bound communication
✓Portable / efficient implementation
✓Ease of integration with quantization algorithms
✓Integration with Deep Learning Frameworks

Intel® machine learning scaling library (MLSL)
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Intel® machine learning scaling library (MLSL)
https://github.com/01org/MLSL/releases

Some of the Intel MLSL features include:

• Built on top of MPI, transparently supports various interconnects: Intel® 
Omni-Path Architecture, InfiniBand*, and Ethernet;

• Optimized to drive scalability of DL communication patterns

• Ability to trade off compute for communication performance – beneficial for 
communication-bound scenarios

• New domain-specific features are coming soon

https://github.com/01org/MLSL/releases
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Distributed TensorFlow*

Distributed 
Tensorflow with 

Parameter Server

Source: https://eng.uber.com/horovod/

With 
Parameter 

Server

The parameter server model for distributed training jobs can be 
configured with different ratios of parameter servers to workers, each with 

different performance profiles.
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Distributed TensorFlow* with horovod
➢ Horovod is a distributed training framework for 

TensorFlow, Keras, PyTorch, and MXNet.

➢ The goal of Horovod is to make distributed 
Deep Learning fast and easy to use

➢ Horovod core principles are based on MPI 
concepts such as size, rank, local rank, 
allreduce, allgather and broadcast. 

➢ Separate infrastructure with model 
development

➢ Advantages

➢ Minimal code changes to run distributed TensorFlow

➢ Network-optimal

➢ No parameter server

ring-allreduce

More info: https://github.com/horovod/horovod/

Uber’s open source
Distributed training 

framework for TensorFlow

The ring all-reduce algorithm allows 
worker nodes to average gradients 

and disperse them to all nodes 
without the need for a parameter 

server.

Source: https://eng.uber.com/horovod/

https://github.com/horovod/horovod/
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Distributed Deep Learning Training Across Multiple nodes
Each node running multiple workers/node

Uses optimized MPI Library for gradient updates over network fabric
Caffe – Use Optimized Intel® MPI ML Scaling Library (Intel® MLSL)

TensorFlow* – Uber horovod MPI Library

Intel Best Known Methods: https://ai.intel.com/accelerating-deep-learning-training-inference-system-level-optimizations/

Interconnect Fabric (Intel® OPA or Ethernet)

Node 1 Node NNode 2

Distributed Training with horovod* MPI Lib

https://ai.intel.com/accelerating-deep-learning-training-inference-system-level-optimizations/
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Horovod: How to change the code

https://github.com/horovod/horovod#usage

▪ Add import horovod.tensorflow as hvd and run hvd.init() in the beginning of 
the program

▪ Scale the learning rate by number of workers. Effective batch size in synchronous distributed 
training is scaled by the number of workers. An increase in learning rate compensates for the 
increased batch size.

▪ Wrap optimizer in hvd.DistributedOptimizer. The distributed optimizer delegates gradient 
computation to the original optimizer, averages gradients using allreduce or allgather, and then 
applies those averaged gradients.

▪ Add hvd.BroadcastGlobalVariablesHook(0)to broadcast initial variable states from rank 
0 to all other processes. This is necessary to ensure consistent initialization of all workers when 
training is started with random weights or restored from a checkpoint. Alternatively, if you're not 
using MonitoredTrainingSession, you can simply execute the 
hvd.broadcast_global_variables op after global variables have been initialized.

▪ Modify your code to save checkpoints only on worker 0 to prevent other workers from 
corrupting them. This can be accomplished by passing checkpoint_dir=None to
tf.train.MonitoredTrainingSession, if hvd.rank() != 0.

https://github.com/horovod/horovod#usage
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Horovod 101 Quick start
import horovod.tensorflow as hvd
hvd.init()

#Scale the optimizer
opt = tf.train.AdagradOptimizer(0.01 * hvd.size())

# Add Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer(opt)

hooks = [hvd.BroadcastGlobalVariablesHook(0)]

# Save checkpoints only on worker 0 to prevent other workers from 
corrupting them.
checkpoint_dir = '/tmp/train_logs' if hvd.rank() == 0 else None
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There is way more to consider when 
striking for peak performance on 
distributed deep learning training.:

https://ai.intel.com/white-papers/best-known-methods-for-
scaling-deep-learning-with-tensorflow-on-intel-xeon-
processor-based-clusters/

Scaling Tensorflow*
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Install procedure:

▪ Install the latest versions of Intel MLSL and Intel MPI;

▪ source <mlsl_install>/intel64/bin/mlslvars.sh thread

▪ source <intel_mpi_2019>/intel64/bin/mpivars.sh release_mt

▪ Download Horovod and build it from source code or

– pip install horovod

Intel® MLSL backend for Horovod
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Intel® MLSL backend for Horovod
Launch procedure:

▪ export MLSL_LOG_LEVEL=1 

– output from within MLSL

▪ export MLSL_NUM_SERVERS=X

– X is the number of cores you’d like to dedicate for driving communication

▪ export MLSL_SERVER_AFFINITY=c1,c2,..,cX

– Core IDs dedicated to MLSL servers (uses X ‘last’ cores by default)

▪ export HOROVOD_MLSLbackground_BGT_AFFINITY=c0

– Affinity for thread of Horovod

▪ Adjust OpenMP settings to avoid intersection with c0,c1,..,cX
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Tensorflow+Horovod/cnn_mnist-hvd.ipynb
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Tensorflow+Horovod/cnn_mnist-hvd.ipynb
1) How to initialize Horovod and why is it necessary?

2) Why is it necessary to adept the learning rate with larger batches?

3) How can you dynamically adept the learning rate?

4) How to identify rank #1 (0)?

5) Why is it necessary to adept the number of training steps according to the 
number of workers / larger batches?

6) How can you dynamically adept the number of training steps?

7) How is the single process performance vs 2 ranks vs 4 ranks?
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MNIST CNN Horovod Demo Summary
• Horovod initializes the MPI 

communication underneath and 
therefore defines rank() and size()

• In order to reduce the Time To Train 
with multiple workers, therefore 
increasing the batch size, the learning 
rate needs to scale

• Same for the # of steps for training

• 4 ranks can be faster since less 
threading efficiency is required in 
small convolutions
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Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel 
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the 
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent 
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture 
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the 
specific instruction sets covered by this notice.

Notice revision #20110804

46

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance 
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any 
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully 
evaluating your contemplated purchases, including the performance of that product when combined with other products.  For more complete 
information visit www.intel.com/benchmarks.  

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY 
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS 
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS 
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY 
RIGHT.

Copyright © 2019, Intel Corporation. All rights reserved. Intel, the Intel logo, Pentium, Xeon, Core, VTune, OpenVINO, Cilk, are trademarks of 
Intel Corporation or its subsidiaries in the U.S. and other countries.
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