Random number generation for parallel Monte Carlo

Protocol of a temporary obsession

Jakob van Santen <[jakob.van.santen@desy.de>](mailto:jakob.van.santen@desy.de) In a place, at a time

Motivating example

The best problems are the ones you create yourself

- Factoring CORSIKA out into a service allows flexible scaling
- **Problem**: CORSIKA's RNG is explicit internal state => result depends on which server handles the request.
- **Solution**: client maintains and communicates desired RNG state
- How to communicate and apply state without sacrificing quality or efficiency?
	- a) Brute force, or
	- b) clever math

Requirements for parallel random numbers

A hierarchy of needs

- A single pseudorandom sequence should have:
	- deterministic output
	- an extremely long period (2¹²⁸ or more)
	- no autocorrelation
- Parallel pseudorandom sequences (streams) should be:
	- 1. Disjoint and uncorrelated (provably, if possible)
	- 2. Quickly partitionable into arbitrarily sized substreams
	- 3. Independent of the degree of parallelization
	- 4.Small (<< than 20kB state of MT19937)
	- 5. Fast (random numbers should be cheaper than the calculation they feed)

Partitioning strategies

- 1. Use a single generator with different initial state (seed) for each stream and hope for the best
	- Disjoint and uncorrelated: **maybe**
	- Paritionable: **no**
	- Independent of parallelization: **no**
- 2. Use the same seed, but different parameter sets
	- Disjoint and uncorrelated: **yes**
	- Partitionable: **maybe** (partitioning strategy has to be fixed at the outset)
	- Independent of parallelization: **maybe** (given a sufficiently large number of parameter sets)

Parameterized RNGs: SPRNG

Scalable Parallel Random Number Generator [\(sprng.org](http://sprng.org))

- GPL v2 license
- C++/FORTRAN bindings (custom interface), 3rd-party CUDA implementation exists
- Creates independent "streams" of random numbers
- Independence of streams theoretically proven (for some generators)
- Default generator (lagged Fibonacci) has 2³⁹⁶⁴⁸ independent streams, each with period 21310
- Streams partitioned in a tree with fixed but user-specified arity. Example: with 64 streams, each root generator can spawn 64 substreams, each substream can spawn 64 substreams of its own, etc.
- Pitfalls:
	- **It is possible to exhaust the parameter space** if you try hard enough.
	- **Initializing a full-period RNG is expensive** (O(ms), equivalent to ~2e5 random numbers).

Bad example: Multiply-with-carry RNG

as used in MCML ([atomic.physics.lu.se\)](http://www.atomic.physics.lu.se/fileadmin/atomfysik/Biophotonics/Software/CUDAMCML.pdf), clsim

- Lag-1 MWC generator with period \sim 2⁶⁰, different prime multipliers lead to independent streams
- Good:
	- Very fast (3 floating-point operations per call)
	- Very small (8-byte state fits comfortably in GPU local memory)
- Bad:
	- Number of independent streams limited to number of prime multipliers generated prior to run **(not arbitrarily partitionable)**
	- RNG is attached to a thread rather than work item, so result depends on (nondeterministic) mapping of work items to threads **(result depends on parallelization)**

Partitioning strategies (continued)

Leapfrog *ri*

- Disjoint: **yes**
- Uncorrelated: **maybe**
- Independent of parallelization: **no** *t*
- Quickly partitionable: **maybe**

Block split

- Disjoint and uncorrelated: **yes** bisjonit dhu dhoonelated. **yes**
- Independent of parallelization: **yes**
- Quickly partitionable: **maybe** (requires efficient fast-forward by block size)

[Mertens (2009)] $\mathbf{L}^{\text{noncon}}$ is independent in Figure 4. It does not require an a priori estimate of \mathbf{L}

Fast-forwarding a random number generator So how does a purely mathematical random number generator work? The main numbers that are not from the right block or from the right leap subsequence. St-forwarding a fandom number generator

RNGs produce a recurrent sequence, i.e. the next state depends on the previous N

$$
r_i = f(r_{i-1}, r_{i-2}, \ldots, r_{i-n}),
$$

r det forwarding unodgen in positions by applying it) in times. In the difficult function function, this can be written as an M iterations of the matrix multiplication that we need to provide the first n numbers to provide the first n numbers to get this recurrence of the ground.
The first numbers to get this recurrence of the ground. The ground of the ground of the ground. The ground of Fast-forwarding through M positions by applying f() M times. If f is a linear

$$
\begin{pmatrix}\n r_{i-(n-1)} \\
\vdots \\
r_{i-1} \\
r_i\n\end{pmatrix}\n=\n\begin{pmatrix}\n 0 & 1 & \dots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \dots & 1 \\
a_n & a_{n-1} & \dots & a_1\n\end{pmatrix}\n\begin{pmatrix}\n r_{i-n} \\
\vdots \\
r_{i-2} \\
r_{i-1}\n\end{pmatrix}\n\mod p
$$

 A periodic sequences over a finite field can be generated by a linear recurrence, this
is always nessible in principle, but solv prestical for evolucity linear DNCs. No dividyo possibilo in principio, but only practical for explicitly integratives.
(linear congruential, general linear feedback shift registers, YARNs). between 0 and some prime number prime number prime number p is the linear recurrence prime number p is the lin
Distribution of the linear recurrence prime number p is the linear recurrence prime number of the linear recor and can be computed in $O(n^3 \log M)$ time rather than $O(n^3M)$. Since all finite or is **always possible in principle,** but only practical for explicitly linear RNGs

[Mertens (2009)]

Block-splitting/leapfrogging RNGs: TRNG

Tina's Random Number Generator [\(numbercrunch.de/trng](https://www.numbercrunch.de/trng/))

- 3-clause BSD license
- Passes full suite of empirical tests in TestU01
- C++11 random_number_engine and CUDA bindings
- Some engines with efficient split and skip operations
- Partitioning left to the user

Counter-based RNGs

• An RNG is built out of two functions:

 $f\colon S\to S$ (state transition function)

 $g: S \rightarrow U$ (output function)

- Conventional RNGs have a complicated f() that produces integers over some range, and a simple g() that scales those integers to [0,1).
- Counter-based RNGs make f() simple (a counter!) and a g() that
	- Maps arbitrarily sequences of integers onto another set whose distribution is indistinguishable from noise
	- Is reasonable fast to evaluate
	- \approx g() has the same properties as a good cryptographic block cypher!

Counter-based RNGs: Random123

"Random numbers: as easy as 1, 2, 3" [\(deshawresearch.com](http://www.deshawresearch.com/downloads/download_random123.cgi/))

- 3-clause BSD license
- Passes full suite of empirical tests in TestU01
- C, C++11 random_number_engine, CUDA bindings
- Faster than MT19937 on CPUs with AES-NI support
- 2^{64} possible streams, each with 2^{128} period
- Skip and split operations naturally supported, and practically free
- Partitioning left to the user

Summary

- Massively parallel random number generation is a common problem, and there are known solutions.
- In all cases, random number generation should be deterministic and independent of granularity of parallelism, execution order, etc.
	- Attach RNG stream/block to particle (or whatever other atomic unit you have in your simulation)
	- Ensure that the conditions for creating a new stream/block are deterministic
- The implementation depends on the characteristics of the simulation
	- For explicit parallelism with rare, predictable branching and no restrictions on local memory: use SPRNG streams
	- For implicit (dynamically load-balanced) parallelism, or with unpredictable workloads, assign a (dynamically sized) block to each work item
		- TRNG: fast-forward blocks in logarithmic time
		- Random123: fast-forward blocks in constant time

Further reading

- Gao, S., & Peterson, G. D. (2013). GASPRNG: GPU accelerated scalable parallel random number generator library. *Computer Physics Communications*, *184*(4), 1241–1249. [http://doi.org/10.1016/](http://doi.org/10.1016/j.cpc.2012.12.001) [j.cpc.2012.12.001](http://doi.org/10.1016/j.cpc.2012.12.001)
- Katzgraber, H. G. (2010). Random Numbers in Scientific Computing: An Introduction. Presented at the International Summer School Modern Computational Science.
- L'Ecuyer, P., & Simard, R. (2007). TestU01: A C Library for Empirical Testing of Random Number Generators. *ACM Trans. Math. Softw.*, *33*(4), 22:1–22:40. <http://doi.org/10.1145/1268776.1268777>
- Manssen, M., Weigel, M., & Hartmann, A. K. (2012). Random number generators for massively parallel simulations on GPU. *The European Physical Journal Special Topics*, *210*(1), 53–71. [http://](http://doi.org/10.1140/epjst/e2012-01637-8) doi.org/10.1140/epjst/e2012-01637-8
- Mascagni, M., & Srinivasan, A. (2000). Algorithm 806: SPRNG: A Scalable Library for Pseudorandom Number Generation. *ACM Trans. Math. Softw.*, *26*(3), 436–461. [http://doi.org/](http://doi.org/10.1145/358407.358427) [10.1145/358407.358427](http://doi.org/10.1145/358407.358427)
- Mertens, S. (2009). Random Number Generators: A Survival Guide for Large Scale Simulations. Presented at the International Summer School Modern Computational Science.
- Salmon, J. K., Moraes, M. A., Dror, R. O., & Shaw, D. E. (2011). Parallel Random Numbers: As Easy As 1, 2, 3 (pp. 16:1–16:12). Presented at the Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, New York, NY, USA: ACM. [http://](http://doi.org/10.1145/2063384.2063405) doi.org/10.1145/2063384.2063405