
Random number generation
for parallel Monte Carlo
Protocol of a temporary obsession

Jakob van Santen <jakob.van.santen@desy.de>
In a place, at a time

mailto:jakob.van.santen@desy.de

!2

Motivating example
The best problems are the ones you create yourself

• Factoring CORSIKA out into a
service allows flexible scaling

• Problem: CORSIKA’s RNG is
explicit internal state => result
depends on which server handles
the request.

• Solution: client maintains and
communicates desired RNG state

• How to communicate and apply
state without sacrificing quality or
efficiency?

a) Brute force, or

b) clever math

I3CORSIKAClient

I3CORSIKAServer
I3CORSIKAServer

I3CORSIKAServer
I3CORSIKAServer

[some load-balancing proxy]

I3CORSIKAClientI3CORSIKAClient
I3CORSIKAClient

!3

Requirements for parallel random numbers

• A single pseudorandom sequence should have:

• deterministic output

• an extremely long period (2128 or more)

• no autocorrelation

• Parallel pseudorandom sequences (streams) should be:

1. Disjoint and uncorrelated (provably, if possible)

2. Quickly partitionable into arbitrarily sized substreams

3. Independent of the degree of parallelization

4. Small (<< than 20kB state of MT19937)

5. Fast (random numbers should be cheaper than the calculation they feed)

A hierarchy of needs

!4

Partitioning strategies

1. Use a single generator with different initial state (seed) for each stream and
hope for the best

• Disjoint and uncorrelated: maybe

• Paritionable: no

• Independent of parallelization: no

2. Use the same seed, but different parameter sets

• Disjoint and uncorrelated: yes

• Partitionable: maybe (partitioning strategy has to be fixed at the outset)

• Independent of parallelization: maybe (given a sufficiently large number of
parameter sets)

!5

Parameterized RNGs: SPRNG
Scalable Parallel Random Number Generator (sprng.org)

• GPL v2 license

• C++/FORTRAN bindings (custom interface), 3rd-party CUDA implementation exists

• Creates independent “streams” of random numbers

• Independence of streams theoretically proven (for some generators)

• Default generator (lagged Fibonacci) has 239648 independent streams, each with
period 21310

• Streams partitioned in a tree with fixed but user-specified arity. Example: with 64
streams, each root generator can spawn 64 substreams, each substream can
spawn 64 substreams of its own, etc.

• Pitfalls:

• It is possible to exhaust the parameter space if you try hard enough.

• Initializing a full-period RNG is expensive (O(ms), equivalent to ~2e5
random numbers).

http://sprng.org

!6

Bad example: Multiply-with-carry RNG
as used in MCML (atomic.physics.lu.se), clsim

• Lag-1 MWC generator with period ~260, different prime multipliers lead to
independent streams

• Good:

• Very fast (3 floating-point operations per call)

• Very small (8-byte state fits comfortably in GPU local memory)

• Bad:

• Number of independent streams limited to number of prime multipliers
generated prior to run (not arbitrarily partitionable)

• RNG is attached to a thread rather than work item, so result depends on
(nondeterministic) mapping of work items to threads (result depends on
parallelization)

http://www.atomic.physics.lu.se/fileadmin/atomfysik/Biophotonics/Software/CUDAMCML.pdf

!7

Partitioning strategies (continued)

Leapfrog

• Disjoint: yes

• Uncorrelated: maybe

• Independent of parallelization: no

• Quickly partitionable: maybe
(requires efficient fast-forward by N)

Block split

• Disjoint and uncorrelated: yes

• Independent of parallelization: yes

• Quickly partitionable: maybe
(requires efficient fast-forward by
block size)

Random Number Generators (Mertens)

ri

1,i

2,i

0,it

t

t

r

t

t

t

i

2,i

1,i

0,i

Figure 4: Parallelization by block splitting (left) and leapfrogging (right).

The leapfrog method distributes a sequence (r) of random numbers over d processes
by decimating this base sequence such that

t0,i = rdi

t1,i = rdi+1

. . .

td−1,i = rdi+(d−1) .

(10)

Leapfrogging is illustrated in Figure 4. It does not require an a priori estimate of how
many random numbers will be consumed by each processor.

Note that for a periodic sequence (r) the substreams derived from block-splitting
are cyclic shifts of the original sequence (r), and for p not dividing the period of (r),
the leapfrog sequences are cyclic shifts of each other. Hence the leapfrog method is
equivalent to block-splitting on a different base sequence.

Leapfrog and block splitting support fair play, i.e., they allow us to program par-
allel simulations that use the same random numbers in the same context idependently
of the number of parallel streams.

As an illustrative example we consider the site percolation problem. A site in a
lattice of size N is occupied with some probability, and the occupancy is determined
by a pseudo random number. M random configurations are generated.

A fair playing percolation simulation can be organized by leapfrogging on the level
of lattice configurations. Here each process consumes distinct contiguous blocks of
numbers from the sequence (r), and the workload is spread over d processors in such
a way that each process analyses each dth lattice. If we number the processes by their
rank i from 0 to d − 1 and the lattices from 0 to M − 1, each process starts with a
lattice whose number equals its own rank. That means process i has to skip i · N
random numbers before the first lattice configuration is generated. Thereafter each
process can skip d − 1 lattices, i. e., (d − 1) · N random numbers, and continue with
the next lattice.

Organizing simulation algorithms such that they play fair is not always as easy
as in the above example, but with a little effort one can achieve fair play in more
complicated situations, too. This may require the combination of block splitting and
the leapfrog method, or iterated leapfrogging. Sometimes it is also necessary to use
more than one stream of random numbers per process, as we will see below.

10

Random Number Generators (Mertens)

ri

1,i

2,i

0,it

t

t

r

t

t

t

i

2,i

1,i

0,i

Figure 4: Parallelization by block splitting (left) and leapfrogging (right).

The leapfrog method distributes a sequence (r) of random numbers over d processes
by decimating this base sequence such that

t0,i = rdi

t1,i = rdi+1

. . .

td−1,i = rdi+(d−1) .

(10)

Leapfrogging is illustrated in Figure 4. It does not require an a priori estimate of how
many random numbers will be consumed by each processor.

Note that for a periodic sequence (r) the substreams derived from block-splitting
are cyclic shifts of the original sequence (r), and for p not dividing the period of (r),
the leapfrog sequences are cyclic shifts of each other. Hence the leapfrog method is
equivalent to block-splitting on a different base sequence.

Leapfrog and block splitting support fair play, i.e., they allow us to program par-
allel simulations that use the same random numbers in the same context idependently
of the number of parallel streams.

As an illustrative example we consider the site percolation problem. A site in a
lattice of size N is occupied with some probability, and the occupancy is determined
by a pseudo random number. M random configurations are generated.

A fair playing percolation simulation can be organized by leapfrogging on the level
of lattice configurations. Here each process consumes distinct contiguous blocks of
numbers from the sequence (r), and the workload is spread over d processors in such
a way that each process analyses each dth lattice. If we number the processes by their
rank i from 0 to d − 1 and the lattices from 0 to M − 1, each process starts with a
lattice whose number equals its own rank. That means process i has to skip i · N
random numbers before the first lattice configuration is generated. Thereafter each
process can skip d − 1 lattices, i. e., (d − 1) · N random numbers, and continue with
the next lattice.

Organizing simulation algorithms such that they play fair is not always as easy
as in the above example, but with a little effort one can achieve fair play in more
complicated situations, too. This may require the combination of block splitting and
the leapfrog method, or iterated leapfrogging. Sometimes it is also necessary to use
more than one stream of random numbers per process, as we will see below.

10

[Mertens (2009)]

!8

Fast-forwarding a random number generator

RNGs produce a recurrent sequence, i.e. the next state depends on the previous N

2 Recurrent Randomness

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

r
i

r i+
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ri

r i+
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ri

r i+
1

Figure 1: Points in the unit square, generated from different (pseudo)random
sources.

reason is reproducibility. With physical noise, each run of a simulation yields a
different result. But a numerical experiment like a simulation should be reproducible.
You might object that real, physical experiments are always subject to uncontrollable
noise. That’s right, but the experimentalists work hard to reduce this noise as much
as possible. And the advantage of numerical experiments is that we can control
everything, including the noise. And we don’t want to give up this position. And, of
course, reproducibility is mandatory when it comes to debugging.

So how does a purely mathematical random number generator work? The main
idea is to generate a sequence (r) = r1, r2, . . . of pseudo-random numbers by a recur-
rence

ri = f(ri−1, ri−2, . . . , ri−n) , (1)

and the art of random number generation lies in the design of the function f . Note
that we need to provide the first n numbers to get this recurrence off the ground.
This is called seeding, and your favourite programming language has a command for
this, like srand(seed) in C. Since (1) is deterministic, the only randomness involved
is the choice of the seed, which is then “spread out” over a whole, usually very long
sequence of numbers. It is quite surprising that this bold approach actually works!

2.1 Linear Recurrences and Randomness

We can mimic true randomness by pseudo randomness well enough, provided our
recurrence is properly designed. One method to generate pseudo random integers
between 0 and some prime number p is the linear recurrence

ri = a1ri−1 + a2ri−2 + . . . + anri−n mod p . (2)

Here it is the mod operation that introduces some randomness by mimicking the
circular arrangement of a roulette wheel. The quality of this method depends on the
magic numbers a1, . . . , ak, and to some extent on n and p. Sequences generated by
(2) are called linear feedback shift register sequences, or LFSR sequences for short.

3

Fast-forwarding through M positions by applying f() M times. If f is a linear
function, this can be written as an M iterations of the matrix multiplication

3 Parallelization

3.3 Parallelization of Linear Recurrences

We can “simulate” block splitting and leapfrogging by throwing away all random
numbers that are not from the right block or from the right leapfrog subsequence.
This works for any PRNG, but it is not very efficient and foils parallelization. For an
efficient parallelization, we should be able to modify a PRNG to generate directly only
every dth element of the original sequence (for leapfrogging) or to directly advance
the PRNG by M steps (for block splitting). For LFSR sequences (2), both can be
achieved very efficiently.

Let’s start with block splitting, i.e., with jumping ahead in a linear recurrence.
Note that by introducing a companion matrix A the linear recurrence (2) can be
written as a vector matrix product:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ri−(n−1)

...

ri−1

ri

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

an an−1 . . . a1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

A

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ri−n

...

ri−2

ri−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

mod p (11)

From this formula it follows immediately that the M -fold successive iteration of (2)
may be written as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ri−(n−1)

...

ri−1

ri

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= AM

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ri−M−(n−1)

...

ri−M−1

ri−M

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

mod p . (12)

Matrix exponentiation can be accomplished in O
(

n3 lnM
)

steps via binary exponen-
tiation, also known as exponentiation by squaring.

Implementing leapfrogging efficiently is less straightforward. Calculating tj,i =
rdi+j via

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

rdi+j−(n−1)

...

rdi+j−1

rdi+j

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= Ad

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

rd(i−1)+j−(n−1)

...

rd(i−1)+j−1

rd(i−1)+j

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

mod m (13)

is no option, because Ad is usually a dense matrix, in which case calculating a new ele-
ment from the leapfrog sequence requires O(n2) operations instead of O(n) operations
as in the base sequence.

11

and can be computed in O(n3logM) time rather than O(n3M). Since all finite or
periodic sequences over a finite field can be generated by a linear recurrence, this
is always possible in principle, but only practical for explicitly linear RNGs
(linear congruential, general linear feedback shift registers, YARNs).

[Mertens (2009)]

!9

Block-splitting/leapfrogging RNGs: TRNG
Tina’s Random Number Generator (numbercrunch.de/trng)

• 3-clause BSD license

• Passes full suite of empirical tests in TestU01

• C++11 random_number_engine and CUDA bindings

• Some engines with efficient split and skip operations

• Partitioning left to the user

https://www.numbercrunch.de/trng/

!10

Counter-based RNGs

• An RNG is built out of two functions:

• Conventional RNGs have a complicated f() that produces integers over some
range, and a simple g() that scales those integers to [0,1).

• Counter-based RNGs make f() simple (a counter!) and a g() that

• Maps arbitrarily sequences of integers onto another set whose distribution
is indistinguishable from noise

• Is reasonable fast to evaluate

• => g() has the same properties as a good cryptographic block cypher!

f : S → S
g : S → U

(state transition function)

(output function)

[Salmon et al (2011)]

!11

Counter-based RNGs: Random123
“Random numbers: as easy as 1, 2, 3” (deshawresearch.com)

• 3-clause BSD license

• Passes full suite of empirical tests in TestU01

• C, C++11 random_number_engine, CUDA bindings

• Faster than MT19937 on CPUs with AES-NI support

• 264 possible streams, each with 2128 period

• Skip and split operations naturally supported, and practically free

• Partitioning left to the user

http://www.deshawresearch.com/downloads/download_random123.cgi/

!12

Summary

• Massively parallel random number generation is a common problem, and there are
known solutions.

• In all cases, random number generation should be deterministic and independent of
granularity of parallelism, execution order, etc.

• Attach RNG stream/block to particle (or whatever other atomic unit you have in
your simulation)

• Ensure that the conditions for creating a new stream/block are deterministic

• The implementation depends on the characteristics of the simulation

• For explicit parallelism with rare, predictable branching and no restrictions on
local memory: use SPRNG streams

• For implicit (dynamically load-balanced) parallelism, or with unpredictable
workloads, assign a (dynamically sized) block to each work item

• TRNG: fast-forward blocks in logarithmic time

• Random123: fast-forward blocks in constant time

!13

Further reading

Gao, S., & Peterson, G. D. (2013). GASPRNG: GPU accelerated scalable parallel random number
generator library. Computer Physics Communications, 184(4), 1241–1249. http://doi.org/10.1016/
j.cpc.2012.12.001

Katzgraber, H. G. (2010). Random Numbers in Scientific Computing: An Introduction. Presented at
the International Summer School Modern Computational Science.

L’Ecuyer, P., & Simard, R. (2007). TestU01: A C Library for Empirical Testing of Random Number
Generators. ACM Trans. Math. Softw., 33(4), 22:1–22:40. http://doi.org/10.1145/1268776.1268777

Manssen, M., Weigel, M., & Hartmann, A. K. (2012). Random number generators for massively
parallel simulations on GPU. The European Physical Journal Special Topics, 210(1), 53–71. http://
doi.org/10.1140/epjst/e2012-01637-8

Mascagni, M., & Srinivasan, A. (2000). Algorithm 806: SPRNG: A Scalable Library for Pseudorandom
Number Generation. ACM Trans. Math. Softw., 26(3), 436–461. http://doi.org/
10.1145/358407.358427

Mertens, S. (2009). Random Number Generators: A Survival Guide for Large Scale Simulations.
Presented at the International Summer School Modern Computational Science.

Salmon, J. K., Moraes, M. A., Dror, R. O., & Shaw, D. E. (2011). Parallel Random Numbers: As Easy
As 1, 2, 3 (pp. 16:1–16:12). Presented at the Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, New York, NY, USA: ACM. http://
doi.org/10.1145/2063384.2063405

http://doi.org/10.1016/j.cpc.2012.12.001
http://doi.org/10.1016/j.cpc.2012.12.001
http://doi.org/10.1145/1268776.1268777
http://doi.org/10.1140/epjst/e2012-01637-8
http://doi.org/10.1140/epjst/e2012-01637-8
http://doi.org/10.1145/358407.358427
http://doi.org/10.1145/358407.358427
http://doi.org/10.1145/2063384.2063405
http://doi.org/10.1145/2063384.2063405

