

Probing multivariate methods to study $H \rightarrow \mu\mu$ events in the VH and VBF channels

Erik Hettwer Benitez

erik.hettwer@gmail.com

www.kit.edu

Motivation

"Why does mass appear? We don't know. If we understood that, we'd know a lot more about the whole world." R. Feynman

The Yukawa coupling of the Higgs boson to second generation fermions is of great interest

- Clean final state with high sensitivity due to well understood muons
- Rare decay due to the small muon massHigh luminosity enables this search

Overview

Introduction

- Run 2 analysis strategy
- Decay signature of $H \rightarrow \mu\mu$ and background processes
- Event Selection
- Invariant dimuon mass spectrum for WH and VBF
- Neural Networks
- **H** $\rightarrow \mu\mu$ with NN for WH and VBF Higgs boson production
- Summary of expected upper limits on the signal strength parameter
- Conclusion

Previous Searches

Measurements have been performed at CMS for LHC Run 2 data

Branching Ratio was measured to be within $0.7 \times 10^{-4} < \Re (H \rightarrow \mu \mu) < 4.5 \times 10^{-4}$ at 95% CL

- There is evidence at 3 σ for this decay, but no observation can be claimed so far
- Analysis methods in the analysis from 2021 vary between Higgs production channels
- Different methods have been probed in this work to explore possible pathways for a Run 3 analysis
- No systematic uncertainties have been taken into account in this work, so further studies are needed

The Large Hadron Collider (LHC)

- High energy particle accelerator that collides protons at 13 TeV
- Four main experiments (ATLAS, CMS, LHCb, ALICE)
- Integrated Luminosity in 2018 (year of subject to this study): $L = 67.86 \, \text{fb}^{-1}$
- High energy collisions produce particles of interest like the Higgs boson
- These collisions are studied at the individual experiments

The CMS Experiment

- Hermetic nearly 4π multi purpose particle detector
 - Components (inner to outer layers):
 - Silicon Pixel Detector
 - Silicon Strip Detector
 - Electromagnetic Calorimeter
 - Hardon Calorimeter
 - Solenoid Magnet
 - Muon Chambers

Analysis Strategy from 2021

ggH, VH, tt - Higgs production:

Phase Space selection

Training of multiple BDTs on variables

- Selection on classifier output to define samples of different signal purity
- Dimuon mass ML fit on those samples
- Calculation of CLs for each individual sample and combination

VBF Higgs production:

- Phase space selection
- Training of deep neural networks on variables including the dimuon mass
- ML fit of the classifier output
- Calculation of CLs

WH Higgs production (lept. W decay):

Two opposite-sign muons

Invariant muon mass expected close to Higgs mass

One Additional visible lepton

VBF Higgs production:

- Two opposite-sign muons
- Invariant muon mass expected close to Higgs mass
- Two jets from quark interaction

Decay signature of $H \rightarrow \mu \mu$ and background processes

Any process that produces the same final state is considered a background process

- The primary event selection should reduce these backgrounds as much as possible while preserving the signal
- Cuts on kinematic variables are used to reduce the total phase space

Event Selection Criteria:

HLT_IsoMu24 trigger
Loose muon isolation
(p_T)₁ > 26 GeV (offline)
(p_T)_{2/3} > 20 GeV

WH leptonic phase space:

- Sum of lepton charges is uneven
- $m_{\mu\mu, \text{cand.Higgs}} \in [110, 150] \,\text{GeV}$
- If $m_{\mu\mu} \in [81, 101]$ GeV -> discard
- No medium b-tagged jets, max two loose b-tagged jets

VBF phase space:

- Sum of lepton charges is even
- At least two jets (sorted by $p_{\rm T}$)
- $(p_{\rm T})_{\rm j1} > 35 \,{\rm GeV}$
- $(p_{\rm T})_{\rm j2} > 25 \,{\rm GeV}$
- $m_{jj} > 400 \, \text{GeV}$
- $|\eta_{jj}| > 2.5$
- No medium b-tagged jets, max one loose b-tagged jet

Decay signature of $H \rightarrow \mu \mu$ and background processes

Any process that produces the same final state is considered a background process
 The primary event selection should reduce these backgrounds as much as possible while preserving the signal

Cuts on kinematic variables are used to reduce the total phase space

Invariant Dimuon Mass Spectrum

WH leptonic phase space:

VBF phase space:

CMS Group, ETP, Karlsruhe Institute of Technology

ML Fit of the Dimuon Mass Spectrum

Goal: Calculate expected upper limits on the signal strength parameter

$$u = \frac{\sigma_{\text{observed}}}{\sigma_{\text{SM}}}$$

It Compares the observed signal to the Standard Model, with $\mu = 1$ matching the prediction, $\mu > 1$ indicating excess, and $\mu < 1$ showing a deficit.

The signal confidence level is defined as:

$$CL_s = \frac{CL_{s+b}}{CL_b}$$
 with $CL_{s+b} = 1 - p_{s+b}$ and $CL_b = 1 - p_b$
Avoids overly conservative results by including the possibility of background fluctuations

Fit Results Dimuon Mass Fit

- The resulting distributions have been fit using COMBINE under a background only hypothesis
- An expected 95% CLs upper limit is calculated on the signal strength parameter μ

	WH leptonic	VBF
Expected upper Limit	$\mu = 10.19^{+4.47}_{-3.01}$	$\mu = 3.64^{+1.45}_{-1.04}$
Expected Significance	0.21σ	0.55σ

Interlude: Neural Networks

- **Perceptron:** A basic unit in neural networks that computes a weighted sum of inputs.
- **Activation:** An activation function determines the output.
- **Linear Limit:** A single perceptron solves linearly separable problems.
- **MLP:** A multi-layer perceptron connects neurons to solve non-linear problems.
- **Hidden Layers:** Layers between input and output that learn abstract features.
- **Weights & Biases:** Values that adjust how inputs influence the output during training.

Source: <u>https://upload.wikimedia.org/.../Perceptron_moj.png</u>

Interlude: Neural Networks

Training:

- Feed data through the network (feedforward).
- Calculate the error using a loss function.
- Use back-propagation to update weights and biases.
- Repeat until the model converges or reaches a stopping criterion.

Inference:

- Feed new data into the trained network.
- Generate predictions using the learned weights.

Source: <u>https://www.sciencedirect.com/.../neural-network-training</u>

Event Categorization using Neural Networks

- The main discriminating variable in this problem is the invariant dimuon mass
- Other variables do also possess discriminating power
- Utilizing more variables may lead to better signal sensitivity

Event Categorization using Neural Networks

- The main discriminating variable in this problem is the invariant dimuon mass
- Other variables do also possess discriminating power
- Utilizing more variables may lead to better signal sensitivity

Event Categorization using Neural Networks

- The main discriminating variable in this problem is the invariant dimuon mass
- Other variables do also possess discriminating power
- Utilizing more variables may lead to better signal sensitivity

Input $\mathcal{O}(20)$ Features

Training Process

- Neural Network is trained on Monte Carlo (MC) simulated events
- Training/Validation dataset split of 4/1
- Uses batch normalisation as wells as Dropout of 0.5 to avoid over-fitting
- ReLU activation between layers + sigmoid activation for output layer
- Bayesian optimisation used to find optimal hyperparameters

Neural Network Output

WH leptonic phase space:

VBF phase space:

CMS Group, ETP, Karlsruhe Institute of Technology

Fit results NN Output

- The resulting distributions have been fit using COMBINE under a background only hypothesis
- An expected 95% CLs upper limit is calculated on the signal strength parameter μ

	WH leptonic	VBF
Expected upper Limit	$\mu = 7.72^{+3.66}_{-2.42}$	$\mu = 2.21^{+0.92}_{-0.64}$
Expected Significance	0.3σ	0.93σ

Neural Network Output Cut + Dimuon Mass Fit

WH leptonic phase space:

VBF phase space:

CMS Group, ETP, Karlsruhe Institute of Technology

Results NN Output Cut + Dimuon Mass Fit

- The resulting distributions have been fit using COMBINE under a background only hypothesis
- An expected 95% CLs upper limit is calculated on the signal strength parameter μ

	WH leptonic	VBF
Expected upper Limit	$\mu = 9.13^{+4.29}_{-2.83}$	$\mu = 2.93^{+1.20}_{-0.84}$
Expected Significance	0.25σ	0.69σ

Summary of Expected upper limits though different methods

CMS Group, ETP, Karlsruhe Institute of Technology

Conclusion

- Expected upper limits on the signal strength parameter where set in two Higgs production channels using three different methods:
 - Fitting the invariant dimuon mass spectrum
 - Fitting the classifier output of a deep neural network
 - Fitting the dimuon mass spectrum after cutting on the classifier
- The best result is obtained when fitting the classifier output directly for both channels
- Care must be taken when using this approach to model all contributions correctly!
- The neural network works as a de facto black box which carries an inherent risk
- Both multivariate methods carry this risk but one seems to perform better

Training Variables

WH leptonic phase space

Variable Name	Description	Variable Name	Description
$p_{\mathrm{T}}(\mu_1)$	transverse momentum of the leading muon	$p_{\mathrm{T}}(\mu_1)$	transverse momentum of the leading muon
$p_{\rm T}(\mu_2)$	transverse momentum of the sub-leading muon	$p_{\rm T}(\mu_2)$	transverse momentum of the sub-leading muon
$p_{\mathrm{T}}(\ell_3)$	transverse momentum of the remaining lepton	ф.	azimuth angle of u_1
$m_{\mu_1\mu_2}$	dimuon mass of Higgs boson candidate	Ψ1 4	azimuth angle of μ_1
$p_{\mathrm{T}}(\mu_1\mu_2)$	transverse momentum of Higgs candidate	$arphi_2$	azimum angle of μ_2
$\eta(\mu_1\mu_2)$	pseudorapidity of Higgs candidate	η_1	pseudorapidity of μ_1
$\phi(\mu_1\mu_2)$	azimuth angle of Higgs candidate	η_2	pseudorapidity of μ_2
$\Delta \eta_{13}$	difference in pseudorapidity between μ_1 and ℓ_3	(DT);1	transverse momentum of the leading jet
$\Delta \eta_{23}$	difference in pseudorapidity between μ_2 and ℓ_3	$(P_{I})_{J}$	transverse momentum of the sub leading jet
$\Delta \eta_{12;3}$	difference in pseudorapidity between Higgs cand. and ℓ_3	$(p_{\Gamma})_{j2}$	transverse momentum of the sub-leading jet
$\Delta \phi_{13}$	difference in azimuth angle between μ_1 and ℓ_3	$\phi_{\mathbf{j}1}$	azimuth angle of leading jet
$\Delta \phi_{23}$	difference in azimuth angle between μ_2 and ℓ_3	$\phi_{\mathbf{j}2}$	azimuth angle of sub-leading jet
$\Delta \phi_{12;3}$	difference in azimuth angle between Higgs cand. and ℓ_3	η_{i1}	pseudorapidity of leading jet
ΔR_{12}	measure of separation between μ_1 and μ_2	n:.	nseudoranidity of sub-leading jet
ΔR_{13}	measure of separation between μ_1 and ℓ_3	//j1 (p_)	di int transversa mamantum
ΔR_{23}	measure of separation between μ_2 and ℓ_3	$(P_{\rm T})_{\rm jj}$	di-jet transverse momentum
$\cos heta_{12}^*$	opening angle between μ_1 and μ_2 in the μ_1 rest frame	$(p_{\mathrm{T}})_{\mu\mu}$	dimuon transverse momentum
$\cos heta_{13}^*$	opening angle between μ_1 and ℓ_3 in the μ_1 rest frame	m_{ii}	di-jet mass
$\cos \theta^*_{23}$	opening angle between μ_2 and ℓ_3 in the μ_2 rest frame	<i>m</i>	dimuon mass
η_1	pseudorapidity of μ_1	mμ	number of ists
η_2	pseudorapidity of μ_2	<i>n</i> jets	
q_n	charge of the lepton <i>n</i>	n_{μ}	number of muons

VBF phase space

CMS Group, ETP, Karlsruhe Institute of Technology