Interpreting the data of the Pierre Auger Observatory

Teresa Bister

KIT, October 2024

PIERRE AUGER OBSERVATORY

main aim: learn more about the sources of UHECRs

usual assumptions:

- maximum energy prop. to charge number Z: "Peters cycle"
- shape: power-law + cutoff:

 model 5 representative elements (H, He, N, Si, Fe)

compare to data

Combined fit of spectrum and composition

Model predictions on Earth

Pierre Auger Collaboration JCAP05(2023)024

Model predictions for the source evolution

test cosmological source evolution $\psi(z) \propto (1+z)^m$

Pierre Auger Collaboration JCAP05(2023)024

Model predictions for the source evolution

test cosmological source evolution $\psi(z) \propto (1+z)^m$

Pierre Auger Collaboration JCAP05(2023)024

Model predictions for the source evolution

test cosmological source evolution $\psi(z) \propto (1+z)^m$

Model predictions: source injection

Pierre Auger Collaboration JCAP 05 024 (2023)

Radboud University P Teresa Bister | slide 14

Why is the spectral index so unexpectedly hard?

possible explanations:

1) source evolution

e.g. Pierre Auger Collaboration JCAP 05 024 (2023)

2) systematic effects

e.g. Pierre Auger Collaboration JCAP 01 022 (2024)

3) interactions/magnetic confinement in source environment

e.g. Unger, Farrar, Anchordoqui, PRD 92 123001 (2015)

4) cutoff shape

e.g. Pierre Auger Collaboration JCAP 07 094 (2024)

5) extragalactic magnetic field

e.g. Pierre Auger Collaboration JCAP 07 094 (2024)

softer evolution:

- \rightarrow less distant sources
- \rightarrow less low-energy secondaries
- → softer spectrum ok (=more low-energy primaries)
- \rightarrow but: effect not big

 γ (HE)

Why is the spectral index so unexpectedly hard?

possible explanations:

1) source evolution

e.g. Pierre Auger Collaboration JCAP 05 024 (2023)

2) systematic effects

e.g. Pierre Auger Collaboration JCAP 01 022 (2024)

3) interactions/magnetic confinement in source environment

e.g. Unger, Farrar, Anchordoqui, PRD 92 123001 (2015)

4) cutoff shape

e.g. Pierre Auger Collaboration JCAP 07 094 (2024)

5) extragalactic magnetic field

e.g. Pierre Auger Collaboration JCAP 07 094 (2024)

including best-fit shift of -0.9 σ in $X_{\rm max}$ scale: $\gamma = -1.04^{+0.44}_{-0.33}$

true composition on Earth is heavier \rightarrow spectral index can become softer

Unger, Farrar, Anchordoqui, PRD 92 123001 (2015)

Why is the spectral index so unexpectedly hard?

possible explanations:

1) source evolution

e.g. Pierre Auger Collaboration JCAP 05 024 (2023)

2) systematic effects

e.g. Pierre Auger Collaboration JCAP 01 022 (2024)

3) interactions/magnetic confinement in source environment

e.g. Unger, Farrar, Anchordoqui, PRD 92 123001 (2015)

4) cutoff shape

e.g. Pierre Auger Collaboration JCAP 07 094 (2024)

5) extragalactic magnetic field

e.g. Pierre Auger Collaboration JCAP 07 094 (2024)

Pierre Auger Collaboration JCAP 07 094 (2024)

Why is the spectral index so unexpectedly hard?

possible explanations:

1) source evolution

e.g. Pierre Auger Collaboration JCAP 05 024 (2023)

2) systematic effects

e.g. Pierre Auger Collaboration JCAP 01 022 (2024)

3) interactions/magnetic confinement in source environment

e.g. Unger, Farrar, Anchordoqui, PRD 92 123001 (2015)

4) cutoff shape

e.g. Pierre Auger Collaboration JCAP 07 094 (2024)

5) extragalactic magnetic field

e.g. Pierre Auger Collaboration JCAP 07 094 (2024)

Why is the spectral index so unexpectedly hard?

possible explanations:

1) source evolution

e.g. Pierre Auger Collaboration JCAP 05 024 (2023)

2) systematic effects

e.g. Pierre Auger Collaboration JCAP 01 022 (2023)

3) interactions/magnetic confinement in source environment

e.g. Unger, Farrar, Anchordoqui, PRD 92 123001 (2015)

4) cutoff shape

e.g. Pierre Auger Collaboration JCAP 07 094 (2024)

5) extragalactic magnetic field

e.g. Pierre Auger Collaboration JCAP 07 094 (2024)

EGMF can have strong effect on injection, but only for:

- steep injection cutoff $\Delta > 1$
- & source densities < 10⁻³ Mpc⁻³
- & very strong field strengths B~10-200 nG between nearest sources & Earth
- → then: can reach y~2

Adding arrival directions as an observable

What do the arrival directions look like at ~40 EeV?

What do the arrival directions look like at ~40 EeV?

Nearby starburst galaxies or active galactic nuclei could explain the measured arrival directions based on their directions & fluxes

TB for the Pierre Auger Collaboration, PoS ICRC 2023 The Pierre Auger Collaboration JCAP01(2024)022

Adding arrival directions to the model

Best-fit model: arrival directions

Centaurus A

Starburst Galaxies

Radboud University P Teresa Bister | slide 23

Best-fit model: arrival directions

Radboud University (Teresa Bister | slide 24

TB for the Pierre Auger Collaboration, PoS ICRC 2023 The Pierre Auger Collaboration JCAP01(2024)022

Best-fit model: arrival directions

What about lower energies?

- dipole with significance $>5\sigma$
- no significant quadrupole or higher moments
- not aligned with Galactic center
 - sources extragalactic!

What about lower energies?

Cosmic-ray sky at E > 8 EeV:

- dipole with significance $>5\sigma$
- no significant quadrupole or higher moments
- not aligned with Galactic center
 - sources extragalactic!

sources at lower energy:

- → larger horizon
- more sources contribute, not dominated by nearby candidates

dipole can be explained by extragalactic sources following the large-scale structure of the universe

+ deflection by Galactic magnetic field

e.g. Ding, Globus, Farrar ApJL 913 L13 (2021) Globus, Piran, Hoffman, Carlesi, Pomarede MNRAS 484 (2019) Allard, Aublin, Baret, Parizot A&A 664 A120 (2022) The Pierre Auger Collaboration arXiv:2408.05292

Include arrival directions: large-scale

Radboud University P Teresa Bister | slide 29

Dipole predictions using JF12

dipole direction not perfect at lower energy
 → update of GMF model?

Using new magnetic field models

8 new GMF models recently became available (UF23)

- all predict the dipole direction close to measured one!
 - → but none fits perfectly at all energies
- models quite similar
 - uncertainties on GMF (random & turbulent) do not obstruct conclusions on sources
 - → cannot reject any model
- biggest uncertainty: from cosmic variance—

What value is realistic for the source density n_s ?

n_s = 10⁻³ Mpc⁻³

Unger & Farrar, ApJ 2024 970 95

E > 8 EeV

Radboud University 💮 Teresa Bister | slide 30

Dipole & quadrupole amplitudes with UF23

→ for UF23 models: continuous model disfavored

Bister, Farrar, Unger, ApJL 975 L21

Dipole & quadrupole amplitudes with UF23

→ for UF23 models: continuous model disfavored

Bister, Farrar, Unger, ApJL 975 L21

Dipole & quadrupole amplitudes with UF23

for densities < 10⁻⁵ Mpc⁻³:

*

- \rightarrow too large quadrupole
- → and dipole direction becomes more random for smaller densities

Bister, Farrar, Unger, ApJL 975 L21 Why is the dipole amplitude so small with UF23?

• highest flux illumination is **demagnified by all UF23 models**, different to JF12

- magnification has unexpectedly large influence on dipole amplitude
- caution: due to uncertainties on LSS model + random magnetic field model + EGMF:
 → source density etc. with large uncertainties

Magnification rigidity dependency

Dipolar illumination

Outlook: composition-dependent anisotropies

maximum ΔX (>8 EeV) (g/cm²)

- **composition-dependent arrival direction analyses** possible with neural networks, AugerPrime etc.
 - important to compare to model predictions
- e.g. heavier composition from Galactic plane (~3σ)
 - LSS model does not reproduce this & very small densities needed

<u>split between heavy & light dipole</u>

- larger amplitude for light dipole expected
- directions also predictable

Conclusions

- UHECR picture becomes clearer and clearer
 - models important to understand data
- > 8 EeV: sources most likely follow large-scale structure
 - Galactic magnetic field models lead to good agreement with measured anisotropies
- > 40 EeV: individual source candidates describe data
 - like starburst galaxies, Centaurus A ${\sim}4.5\sigma$ significance
- **promising future:** detector upgrades underway (AugerPrime & TAx4), better composition differentiation, machine learning data...

