

Lateral Distribution Function and Energy Spectrum for the 750 m Array of the Pierre Auger Observatory

Philipp Meder

Master's thesis

IAP-HEU seminar, 7th November 2024

www.kit.edu

Motivation

- Additional low-signal triggers lower the overall efficiency threshold
- Low-energy events can be reconstructed
- Goal: measure in the range of the second knee with the **SD-750**

Extensive air showers

Taken from https://en.wikipedia.org/wiki/File:AirShower.svg

Surface Detector SD-750

Surface Detector: lateral shower profile

Current likelihood

Simulations (artificially low trigger threshold)

Functional form of the LDF

Current LDF: Nishimura-Kamata-Greisen

$$f_{\rm NKG} = \left(\frac{r}{r_{\rm ref}}\right)^{\beta_{\rm NKG}} \left(\frac{r + r_{\rm scale}}{r_{\rm ref} + r_{\rm scale}}\right)^{\beta_{\rm NKG} + \gamma_{\rm NKG}}$$

New LDF: Exponentially Suppressed Power Law

Ensures physical LDFs (only falling) while leaving the fit parameter unbound

For SD-750 array: $r_{ref} = 450 \text{ m}$ $r_{scale} = 700 \text{ m}$

ESPL LDF: catch the correct LDF behaviour far from the core

First term: Second term:

overall fall-off suppression at large distances

Depends in principal on another slope parameter, for SD-750 this simplified form looks reasonable when checked on data

Parameterising the ESPL slope parameter

Transparent: bins with less than 30 events

Raw spectrum – two issues

Constant Intensity Cut

Before: event number not isotropic due to attenuation effects

After: event number corrected for attenuation effects so constant intensity is achived

Data driven efficiency check: core distribution

Example: data up to 30°

attenuation-corrected shower size $S_{35} \in [6, 6.5] \text{ VEM}$

Data driven efficiency check: core distribution

Example: data up to 30°

attenuation-corrected shower size $S_{35} \in [10, 10.5] \text{ VEM}$

Old and new triggers

Data driven efficiency check: core distribution

Energy calibration with SD-FD hybrids

Detector response (not fully investigated due to thesis deadline)

Find the optimal parameters $\hat{\alpha}$ by minimising a log-likelihood based on $f_{\text{Poi}}(n_{\text{events}}(E_i), v_i(\vec{\alpha}))$

Fit model $J_{\text{model}}(E, \vec{\alpha}) = J_0 \left(\frac{E}{100 \text{ PeV}}\right)^{-\gamma_0} \prod_{i=0}^1 \left(1 + \left(\frac{E}{E_{ij}}\right)^{\frac{1}{\omega_{ij}}}\right)^{(\gamma_i - \gamma_j)\omega_{ij}}, \quad j = i+1$

- \blacksquare J_0 is the over-all normalisation constant
- \blacksquare E_{01} is the position of the second knee with transition width ω_{01}
- \blacksquare E_{12} is the position of the ankle with transition width ω_{12}
- $\mathbf{P} \gamma_0$ is the spectral index before the second knee
- \mathbf{P}_{γ_1} is the spectral index between the second knee and the ankle
- \mathbf{P}_{γ_2} is the spectral index after the ankle

We get consistent features when varying the full efficiency threshold!

$\theta_{\rm max} = 20^{\circ}$	parameter	value $\pm \sigma_{\text{stat}} \pm \sigma_{\text{bias}}$		
	$lg(E_{full}/eV)$	16.9	17.0	17.1
	$\frac{J_0 \times 10^{13}}{\rm km^{-2} yr^{-1} sr^{-1} eV^{-1}}$	$1.21 \pm 0.04 \pm 0.14$	$1.20 \pm 0.03 \pm 0.17$	$1.20 \pm 0.01 \pm 0.16$
	$lg(E_{01}/eV)$	$17.07 \pm 0.03 \pm 0.02$	$17.08 \pm 0.08 \pm 0.10$	$17.08 \pm 0.04 \pm 0.33$
	γ_0	$2.83 \pm 0.07 \pm 0.17$	$2.87 \pm 0.13 \pm 0.02$	$2.85 \pm 0.03 \pm 0.28$
	γ_1	$3.41 \pm 0.01 \pm 0.03$	$3.41 \pm 0.02 \pm 0.01$	$3.41 \pm 0.02 \pm 0.03$
	ω_{01} (fixed)	0.25	0.25	0.25
	$lg(E_{12}/eV)$	$18.66 \pm 0.08 \pm 0.02$	$18.65 \pm 0.08 \pm 0.01$	$18.65 \pm 0.08 \pm 0.05$
	γ2	$2.65 \pm 0.27 \pm 0.01$	$2.65 \pm 0.27 \pm 0.00$	$2.65 \pm 0.29 \pm 0.08$
	ω_{12} (fixed)	0.05	0.05	0.05

Uncertainty because of not fully investigated detector effects

Not understood \blacksquare In general, the features are consistent for different θ_{max} 3.0 3.2 $(E/eV)^{2.6} \times J(E)/(km^{-2} yr^{-1} sr^{-1} eV^{-1})$ $\theta \le 20^{\circ}$ 3.0 2.8 3.40 $\theta \le 30^{\circ}$ [∞] 2.8 10^{31} γ_1 22 $\theta \le 40^{\circ}$ 2.6 $\theta \le 55^{\circ}$ 3.35 2.6 2.4 17.2 18.8 lg(E₁₂/eV) 2.81 lg(*E*₀₁/eV) this work $\theta \leq 20^{\circ}$ 10^{30} this work $\theta \leq 30^{\circ}$ this work $\theta \leq 40^{\circ}$ 18.6 this work $\theta \leq 55^{\circ}$ 17.0 17.5 18.5 19.0 19.5 18.0 20.0 16.9 lg(E/eV)

Second knee fixed to mean of the other measurements

Comparing the measurements to other publications

Comparing the measurements to other publications What to do next?

- Include the new reconstruction into the standard software
- Rerun the parameterisation-calibration-chain
- Investigate the necessary properties for the detector response
 Refit the spectral features
- Do the same for the other surface detector arrays

First measurement of the second knee with the SD-750

- " Cld" cross calibration with SD-750
- -750 <----- Fixed second knee
- TA-TALE fluorescence

Backup

Selecting events for the parameterisation (lever-arm criteria)

Many events require parameterised LDF slopes due to low station multiplicity

Not all events with enough stations constrain the LDF slopes good enough

We want to prevent biases in the slope parameterisation!

Find high-quality events where the slope parameters can be fitted freely and use the results for the slope parameterisation!

Lever-arm criteria for a free LDF slope fit (β)

New criteria: LDF in log-log space is approximately a linear function

 $s_i = \ln(S_i/\text{VEM}), \qquad \rho_i = \ln(r_i/\text{m})$

 $\tilde{s}_i = s_i - \langle s \rangle$, $\sigma(\tilde{s}_i) \approx \sigma(s_i)$, $\tilde{\rho}_i = \rho_i - \langle \rho \rangle$

Lever-arm criteria for a free LDF slope fit (β)

Event quality conditions: Minimum of 5 stations 6T5 and $\theta \leq 55^{\circ}$ For comparison with old criteria: T4 trigger efficiency $p_{T4} \ge 0.99$ Fitted curvature, no saturation 10^{4} old, not new 10^{3} 10^{2} S/VEM**Rejected stations** 10^{1} Silent stations m = -2.22= 1.48 10^{0}

More information in GAP-2024-033

IAP – Institute for Astroparticle Physics

 10^{-}

std $\tilde{o} = 0.06$

 10^{2}

 $\mathcal{R} = -0.96$

Is the shower size correctly estimated?

Is the shower size correctly estimated?

Comparison with old reconstruction

Comparison with old reconstruction

IAP – Institute for Astroparticle Physics

Constant Intensity Cut

Efficiency

Raw spectrum (uncorrected for detector effects)

