Measuring Semileptonic Asymmetries in LHCb

Suzanne Klaver, on behalf of the LHCb Collaboration

Flavorful Ways to New Physics, Freudenstadt, 28-31 October 2014

The University of Manchester

Neutral Meson Mixing

Neutral mesons oscillate into their own antiparticle:

$$i\frac{d}{dt} \begin{pmatrix} |B_q^0(t)\rangle \\ |\bar{B}_q^0(t)\rangle \end{pmatrix} = (M - \frac{i}{2}\Gamma) \begin{pmatrix} |B_q^0(t)\rangle \\ |\bar{B}_q^0(t)\rangle \end{pmatrix}$$

Heavy and light mass eigenstates:

$$|B_L^0\rangle = p|B_q^0\rangle + q|\bar{B}_q^0\rangle$$
$$|B_H^0\rangle = p|B_q^0\rangle - q|\bar{B}_q^0\rangle$$

Different masses and decay widths:

$$\Delta m = m_H - m_L \qquad \text{mixing} \\ \Delta \Gamma = \Gamma_L - \Gamma_H \qquad \text{parameters}$$

CP Violation in Mixing

$$\mathcal{P}(B_q \to \bar{B}_q) \neq \mathcal{P}(\bar{B}_q \to B_q)$$

Flavour specific asymmetry:

$$a_{\rm fs} = \frac{\Gamma(\bar{B}_q \to B_q \to f) - \Gamma(B_q \to \bar{B}_q \to \bar{f})}{\Gamma(\bar{B}_q \to B_q \to f) + \Gamma(B_q \to \bar{B}_q \to \bar{f})} = \frac{1 - |q/p|^4}{1 + |q/p|^4}$$

Semileptonic decays are flavour-specific:

CP violation if lq/pl≠1 →a_{fs} is very

small in SM

How to measure
$$a_{sl}$$

$$a_{sl} = \frac{\Gamma(\bar{B}_q \to B_q \to f) - \Gamma(B_q \to \bar{B}_q \to \bar{f})}{\Gamma(\bar{B}_q \to B_q \to f) + \Gamma(B_q \to \bar{B}_q \to \bar{f})}$$

2 methods:

- Inclusive like-sign dilepton asymmetry: $a_{\rm sl} = A_{ll} = \frac{\Gamma(l^+ l^+) - \Gamma(l^- l^-)}{\Gamma(l^+ l^+) + \Gamma(l^- l^-)}$ time-integrated time-dependent
- Untagged asymmetry: distinguish between B_s^0 and B_d^0 :

$$\frac{N(B,t) - N(B,t)}{N(B,t) + N(\bar{B},t)} = \frac{a_{\rm sl}}{2} \left[1 - \frac{\cos \Delta mt}{\cosh \frac{1}{2} \Delta \Gamma t} \right]$$

Experimental Overview before LHCb

The LHCb Detector

Measuring a_{sl} in LHCb

$$\frac{N(B,t) - N(\bar{B},t)}{N(B,t) + N(\bar{B},t)} = \frac{a_{\rm sl}}{2} \left[1 - \frac{\cos \Delta mt}{\cosh \frac{1}{2} \Delta \Gamma t} \right]$$

Measuring
$$a_{sl}$$
 in LHCb

$$\frac{N(B,t) - N(\bar{B},t)}{N(B,t) + N(\bar{B},t)} = \frac{a_{\rm sl}}{2} \left[1 - \frac{\cos \Delta mt}{\cosh \frac{1}{2} \Delta \Gamma t} \right]$$

For a_{sl}^d , including detection and production asymmetries: $A_{meas}(t) = \frac{N(B,t) - N(\bar{B},t)}{N(B,t) + N(\bar{B},t)} = \frac{a_{sl}^d}{2} + A_D - \left(\frac{a_{sl}^d}{2} + A_P\right) \frac{\cos \Delta m_d t}{\cosh \frac{1}{2} \Delta \Gamma_d t}$

Measuring a_{sl} in LHCb

$$\frac{N(B,t) - N(\bar{B},t)}{N(B,t) + N(\bar{B},t)} = \frac{a_{\rm sl}}{2} \left[1 - \frac{\cos \Delta mt}{\cosh \frac{1}{2} \Delta \Gamma t} \right]$$

For $a_{\rm sl}^d$, including detection and production asymmetries: $A_{\rm meas}(t) = \frac{N(B,t) - N(\bar{B},t)}{N(B,t) + N(\bar{B},t)} = \frac{a_{\rm sl}^d}{2} + A_D - \left(\frac{a_{\rm sl}^d}{2} + A_P\right) \frac{\cos \Delta m_d t}{\cosh \frac{1}{2} \Delta \Gamma_d t}$

For a_{sl}^s , the measurement can be made time-integrated:

$$A_{\text{meas}} = \frac{N(\mu^+ D_s^-) - N(\mu^- D_s^+)}{N(\mu^+ D_s^-) + N(\mu^- D_s^+)} = \frac{a_{\text{sl}}^s}{2} + A_D - \left(\frac{a_{\text{sl}}^s}{2} + A_P\right) \frac{\int_0^\infty e^{-\Gamma_s t} \cos(\Delta m_s t)\varepsilon(t) \, dt}{\int_0^\infty e^{-\Gamma_s t} \cosh(\frac{1}{2}\Delta\Gamma_s t)\varepsilon(t) \, dt}$$

$a_{\rm sl}^s$ in LHCb

$$A_{\text{meas}} = \frac{N(\mu^+ D_s^-) - N(\mu^- D_s^+)}{N(\mu^+ D_s^-) + N(\mu^- D_s^+)} = \frac{a_{\text{sl}}^s}{2} + A_D - \left(\frac{a_{\text{sl}}^s}{2} + A_P\right) \frac{\int_0^\infty e^{-\Gamma_s t} \cos(\Delta m_s t)\varepsilon(t) \, dt}{\int_0^\infty e^{-\Gamma_s t} \cosh(\frac{1}{2}\Delta\Gamma_s t)\varepsilon(t) \, dt}$$

Experimental Overview including LHCb $a_{\rm sl}^s {\rm Result}$

Measuring a_{sl}^d in LHCb

$$A_{\text{meas}}(t) = \frac{N(B,t) - N(\bar{B},t)}{N(B,t) + N(\bar{B},t)} = \frac{a_{\text{sl}}^d}{2} + A_D - \left(\frac{a_{\text{sl}}^d}{2} + A_P\right) \frac{\cos\Delta m_d t}{\cosh\frac{1}{2}\Delta\Gamma_d t}$$

Time-dependent fit to disentangle A_P and a_{sl}^d :

Measuring $a_{\rm sl}^d$ in LHCb

2 decay modes:

Experimental Overview including LHCb $a^d_{\rm sl} {\rm Results}$

Systematic Uncertainties

For the a_{sl}^s analysis:

Source of uncertainty	σ(A _{meas})[%]
Tracking asymmetries	0.26
Muon asymmetries	0.16
Fitting	0.15
Backgrounds	0.10
Total	0.36

$$a_{\rm sl}^s = (-0.06 \pm 0.50({\rm stat}) \pm 0.36({\rm syst}))\%$$

Phys. Lett. B 728 607-615 (2014)

For the a_{sl}^d analysis:

Source of uncertainty	σ(A _{meas})[%]
Detection asymmetry	0.26
B plus	0.13
Baryonic backgrounds	0.07
Decay time model	0.05
Other background	0.04
Total	0.30

 $a^d_{\rm sl} = (-0.02 \pm 0.19 ({\rm stat}) \pm 0.30 ({\rm syst}))\%$ LHCb-PAPER-2014-053

Dominated by control mode statistics

Improvements for the 2012 a_{sl}^s analysis

Expanding the Dalitz Plane

Reducing Systematic Uncertainties

From the 2011 analysis:

Source of uncertainty	σ(A _{meas})[%]
Tracking asymmetries	0.26
Muon asymmetries	0.16
Fitting	0.15
Backgrounds	0.10
Total	0.36

$$a_{\rm sl}^s = (-0.06 \pm 0.50({\rm stat}) \pm 0.36({\rm syst}))\%$$

Phys. Lett. B 728 607-615 (2014)

Efficiency ratios:

$$\frac{\varepsilon(\mu^+\pi^-)}{\varepsilon(\mu^-\pi^+)} = \frac{N(D^0 \to K^-\mu^+\nu_\mu)}{N(\overline{D}^0 \to K^+\mu^-\overline{\nu}_\mu)} \times \frac{N(\overline{D}^0 \to K^+\pi^-)}{N(D^0 \to K^-\pi^+)}$$

Efficiency ratios:

$$\frac{\varepsilon(\mu^+\pi^-)}{\varepsilon(\mu^-\pi^+)} = \frac{N(D^0 \to K^-\mu^+\nu_\mu)}{N(\overline{D}^0 \to K^+\mu^-\overline{\nu}_\mu)} \times \frac{N(\overline{D}^0 \to K^+\pi^-)}{N(D^0 \to K^-\pi^+)}$$

 $\mu\pi$ asymmetries:

$$A_{\mu\pi} = \frac{\varepsilon(\mu^+\pi^-)/\varepsilon(\mu^-\pi^+) - 1}{\varepsilon(\mu^+\pi^-)/\varepsilon(\mu^-\pi^+) + 1}$$

Efficiency ratios:

$$\frac{\varepsilon(\mu^+\pi^-)}{\varepsilon(\mu^-\pi^+)} = \frac{N(D^0 \to K^-\mu^+\nu_\mu)}{N(\overline{D}^0 \to K^+\mu^-\overline{\nu}_\mu)} \times \frac{N(\overline{D}^0 \to K^+\pi^-)}{N(D^0 \to K^-\pi^+)}$$

 $\mu\pi$ asymmetries:

$$A_{\mu\pi} = \frac{\varepsilon(\mu^+\pi^-)/\varepsilon(\mu^-\pi^+) - 1}{\varepsilon(\mu^+\pi^-)/\varepsilon(\mu^-\pi^+) + 1}$$

Not only track asymmetries:

$$A_{\mu\pi} = A_{\mu}^{\rm ID} + A_{\mu}^{\rm trigger} + A_{\mu}^{\rm track} + A_{\pi}^{\rm track} + A_{\pi}^{\rm interaction}$$

Detection asymmetries can depend on kinematics

Reweighting Strategy

Reweighting p_T and η in 3 steps:

1.
$$D^{*+} \to D^0(K^-\pi^+)\pi_s^+$$
 to $\bar{B}_s^0 \to D_s^+(K^+K^-\pi^+)\mu^-\bar{\nu}$
2. $D^{*+} \to D^0(K^-\mu^+\nu)\pi_s^+$ to $D^{*+} \to D^0(K^-\pi^+)\pi_s^+$
3. $\bar{B}_s^0 \to D_s^+(K^+K^-\pi^+)\mu^-\bar{\nu}$ to $D^{*-} \to D^0(K^+\mu^-\bar{\nu})\pi_s^-$

For step 2 we need to use MC kinematics to compensate for the non-reconstructed neutrino.

Example of Reweighting

 π p_T distributions of B_s → D_s (→ K K **π**) µ v_µ and D^{*} → D⁰ (→ K **π**) π_s

Conclusions

Semileptonic asymmetry: $a_{\rm sl} = \frac{\Gamma(\bar{B}_q \to B_q \to f) - \Gamma(B_q \to \bar{B}_q \to \bar{f})}{\Gamma(\bar{B}_q \to B_q \to f) + \Gamma(B_q \to \bar{B}_q \to \bar{f})}$

Conclusions

Semileptonic asymmetry:

$$a_{\rm sl} = \frac{\Gamma(\bar{B}_q \to B_q \to f) - \Gamma(B_q \to \bar{B}_q \to \bar{f})}{\Gamma(\bar{B}_q \to B_q \to f) + \Gamma(B_q \to \bar{B}_q \to \bar{f})}$$

Most recent LHCb measurements:

 $a_{\rm sl}^s = (-0.06 \pm 0.50({\rm stat}) \pm 0.36({\rm syst}))\%$

Phys. Lett. B 728 607-615 (2014)

 $a_{\rm sl}^d = (-0.02 \pm 0.19({\rm stat}) \pm 0.30({\rm syst}))\%$

LHCb-PAPER-2014-053

In agreement with both SM and D0

Conclusions

Semileptonic asymmetry:

$$a_{\rm sl} = \frac{\Gamma(\bar{B}_q \to B_q \to f) - \Gamma(B_q \to \bar{B}_q \to \bar{f})}{\Gamma(\bar{B}_q \to B_q \to f) + \Gamma(B_q \to \bar{B}_q \to \bar{f})}$$

Most recent LHCb measurements:

 $a_{\rm sl}^s = (-0.06 \pm 0.50({\rm stat}) \pm 0.36({\rm syst}))\%$

Phys. Lett. B 728 607-615 (2014)

$$a_{\rm sl}^d = (-0.02 \pm 0.19({\rm stat}) \pm 0.30({\rm syst}))\%$$

LHCb-PAPER-2014-053

In agreement with both SM and D0

New a_{sl}^s analysis is on its way, including:

- extended phase space
- new methods to determine detection asymmetries

Outlook

