New Physics in $\Delta \Gamma_d$

Gilberto Tetlalmatzi

IPPP Durham University

gilberto.tetlalmatzi-xolocotz@durham.ac.uk

October 31, 2014

- Mixing of neutral B mesons.
- The observables $\Delta \Gamma_{d,s}$.

- Mixing of neutral B mesons.
- The observables $\Delta \Gamma_{d,s}$.
- How big can $\Delta \Gamma_d$ be?.

- Mixing of neutral B mesons.
- The observables $\Delta \Gamma_{d,s}$.
- How big can $\Delta \Gamma_d$ be?.
- CKM unitarity violations.

- Mixing of neutral B mesons.
- The observables $\Delta \Gamma_{d,s}$.
- How big can $\Delta \Gamma_d$ be?.
- CKM unitarity violations.
- Current-current operators.

- Mixing of neutral B mesons.
- The observables $\Delta \Gamma_{d,s}$.
- How big can $\Delta \Gamma_d$ be?.
- CKM unitarity violations.
- Current-current operators.
- $(b\bar{d})(\tau\tau)$ operators

- Mixing of neutral B mesons.
- The observables $\Delta \Gamma_{d,s}$.
- How big can $\Delta \Gamma_d$ be?.
- CKM unitarity violations.
- Current-current operators.
- $(b\bar{d})(\tau\tau)$ operators
- Like-sign dimuon asymmetry.

- Mixing of neutral B mesons.
- The observables $\Delta \Gamma_{d,s}$.
- How big can $\Delta \Gamma_d$ be?.
- CKM unitarity violations.
- Current-current operators.
- $(b\bar{d})(\tau\tau)$ operators
- Like-sign dimuon asymmetry.
- Conclusions

 $B_d = \{\overline{b}, d\}$

 $B_d = \{\bar{b}, d\} \qquad \bar{B_d} = \{b, \bar{d}\}$

$$B_{d} = \{\bar{b}, d\} \qquad \bar{B}_{d} = \{b, \bar{d}\}$$
$$i\frac{d}{dt} \begin{pmatrix} |B_{d}\rangle \\ |\bar{B}_{d}\rangle \end{pmatrix} = \Sigma^{d} \begin{pmatrix} |B_{d}\rangle \\ |\bar{B}_{d}\rangle \end{pmatrix}$$

$$B_{d} = \{\bar{b}, d\} \qquad \bar{B}_{d} = \{b, \bar{d}\}$$
$$i\frac{d}{dt} \begin{pmatrix} |B_{d}\rangle \\ |\bar{B}_{d}\rangle \end{pmatrix} = \Sigma^{d} \begin{pmatrix} |B_{d}\rangle \\ |\bar{B}_{d}\rangle \end{pmatrix}$$

 $\Sigma^q = M^q - \frac{i}{2}\Gamma^q$; M^q and Γ^q are hermitian matrices.

$$B_{d} = \{\bar{b}, d\} \qquad \bar{B}_{d} = \{b, \bar{d}\}$$
$$i\frac{d}{dt} \begin{pmatrix} |B_{d}\rangle \\ \bar{B}_{d}\rangle \end{pmatrix} = \Sigma^{d} \begin{pmatrix} |B_{d}\rangle \\ \bar{B}_{d}\rangle \end{pmatrix}$$

 $\Sigma^q = M^q - \frac{i}{2}\Gamma^q$; M^q and Γ^q are hermitian matrices.

$$B_{d} = \{\bar{b}, d\} \qquad \bar{B}_{d} = \{b, \bar{d}\}$$
$$i\frac{d}{dt} \begin{pmatrix} |B_{d}\rangle \\ \bar{B}_{d}\rangle \end{pmatrix} = \Sigma^{d} \begin{pmatrix} |B_{d}\rangle \\ \bar{B}_{d}\rangle \end{pmatrix}$$

 $\Sigma^q = M^q - \frac{i}{2}\Gamma^q$; M^q and Γ^q are hermitian matrices.

 $B_d \iff \bar{B_d}$

$$B_{d} = \{\bar{b}, d\} \qquad \bar{B}_{d} = \{b, \bar{d}\}$$
$$i\frac{d}{dt} \begin{pmatrix} |B_{d}\rangle \\ |\bar{B}_{d}\rangle \end{pmatrix} = \Sigma^{d} \begin{pmatrix} |B_{d}\rangle \\ |\bar{B}_{d}\rangle \end{pmatrix}$$

 $\Sigma^q = M^q - \frac{i}{2}\Gamma^q$; M^q and Γ^q are hermitian matrices.

 $B_d \iff \bar{B_d} \quad (B_s \iff \bar{B_s})$

$$B_{d} = \{\bar{b}, d\} \qquad \bar{B}_{d} = \{b, \bar{d}\}$$
$$i\frac{d}{dt} \begin{pmatrix} |B_{d}\rangle \\ |\bar{B}_{d}\rangle \end{pmatrix} = \Sigma^{d} \begin{pmatrix} |B_{d}\rangle \\ |\bar{B}_{d}\rangle \end{pmatrix}$$

 $\Sigma^q = M^q - \frac{i}{2}\Gamma^q$; M^q and Γ^q are hermitian matrices.

 $B_d \iff \bar{B_d} \quad (B_s \iff \bar{B_s})$

$$\Sigma = \begin{pmatrix} M_{11} - \frac{i\Gamma_{11}}{2} & M_{12} - \frac{i\Gamma_{12}}{2} \\ M_{12}^* - \frac{i\Gamma_{12}}{2} & M_{11} - \frac{i\Gamma_{11}}{2} \end{pmatrix}$$

$$B_{d} = \{\bar{b}, d\} \qquad \bar{B}_{d} = \{b, \bar{d}\}$$
$$i\frac{d}{dt} \begin{pmatrix} |B_{d}\rangle \\ |\bar{B}_{d}\rangle \end{pmatrix} = \Sigma^{d} \begin{pmatrix} |B_{d}\rangle \\ |\bar{B}_{d}\rangle \end{pmatrix}$$

 $\Sigma^q = M^q - \frac{i}{2}\Gamma^q$; M^q and Γ^q are hermitian matrices.

 $B_d \iff \bar{B_d} \quad (B_s \iff \bar{B_s})$

$$\Sigma = \begin{pmatrix} M_{11} - \frac{i\Gamma_{11}}{2} & M_{12} - \frac{i\Gamma_{12}}{2} \\ M_{12}^* - \frac{i\Gamma_{12}}{2} & M_{11} - \frac{i\Gamma_{11}}{2} \end{pmatrix}$$

 $\begin{array}{ll} \Gamma_{12} & \text{On-shell} \\ M_{12} & \text{Off-shell} \end{array}$

d

 \overline{b}

Eigenvalues of
$$\Sigma$$
: $\lambda_L = M_L - \frac{i}{2}\Gamma_L$ $\lambda_H = M_H - \frac{i}{2}\Gamma_H$

Eigenvalues of Σ : $\lambda_L = M_L - \frac{i}{2}\Gamma_L$ $\lambda_H = M_H - \frac{i}{2}\Gamma_H$

$$\Delta M = M_H - M_L$$
$$\Delta \Gamma = \Gamma_H - \Gamma_L$$
$$\phi \equiv \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right)$$

Eigenvalues of Σ : $\lambda_L = M_L - \frac{i}{2}\Gamma_L$ $\lambda_H = M_H - \frac{i}{2}\Gamma_H$

$$\begin{array}{rcl} \Delta M &=& M_H - M_L \\ \Delta \Gamma &=& \Gamma_H - \Gamma_L \\ \phi &\equiv& \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right) \end{array}$$

$$\Delta M \approx 2|M_{12}|$$

$$a_{sl} = \left|\frac{\Gamma_{12}}{M_{12}}\right| sin(\phi)$$

$$\Delta \Gamma \approx 2|\Gamma_{12}|cos(\phi)$$

The observables $\Delta \Gamma_{d,s}$

Experimental results vs theoretical prediction for $\Delta\Gamma_s$:

 $\Delta \Gamma_s^{HFAG} = (0.081 \pm 0.011) \, \rho s^{-1} (LHCb(2013), \, ATLAS(2012), \, CDF \, (2012) \text{ and } D0 \, (2012)).$

 $\Delta \Gamma_s^{HFAG} = (0.081 \pm 0.011) \, \rho s^{-1} (LHCb(2013), \, ATLAS(2012), \, CDF(2012) \text{ and } D0(2012)).$ $\Delta \Gamma_s^{Theo} = (0.087 \pm 0.021) \, \rho s^{-1} (A. \, Lenz \, and \, U. \, Nierste, \, arXiv:1102.4274).$

 $\Delta \Gamma_s^{HFAG} = (0.081 \pm 0.011) \, \rho s^{-1} (LHCb(2013), \, ATLAS(2012), \, CDF(2012) \text{ and } D0(2012)).$ $\Delta \Gamma_s^{Theo} = (0.087 \pm 0.021) \, \rho s^{-1} (A. \text{ Lenz and } U. \text{ Nierste, arXiv:1102.4274}).$

Experimental results vs theoretical prediction for $\Delta\Gamma_d$:

$$\Delta \Gamma_s^{HFAG} = (0.081 \pm 0.011) \, ps^{-1} (LHCb(2013), \, ATLAS(2012), \, CDF(2012) \text{ and } D0(2012)).$$

$$\Delta \Gamma_s^{Theo} = (0.087 \pm 0.021) \, ps^{-1} (A. \, Lenz \, and \, U. \, Nierste, \, arXiv:1102.4274).$$

Experimental results vs theoretical prediction for $\Delta\Gamma_d$:

$$\frac{\Delta \Gamma_d^{HFAG}}{\Gamma_d} = (1.5 \pm 1.8)\% (\text{BABAR}(2006) \text{ and Belle}(2012))$$
$$\frac{\Delta \Gamma_d^{D0}}{\Gamma_d} = (0.50 \pm 1.38)\% (2014).$$
$$\frac{\Delta \Gamma_d^{LHCb}}{\Gamma_d} = (-4.4 \pm 2.7)\% (2014).$$

$$\Delta \Gamma_s^{HFAG} = (0.081 \pm 0.011) \, \rho s^{-1} (LHCb(2013), \, ATLAS(2012), \, CDF(2012) \text{ and } D0(2012)).$$

$$\Delta \Gamma_s^{Theo} = (0.087 \pm 0.021) \, \rho s^{-1} (A. \, Lenz \, and \, U. \, Nierste, \, arXiv:1102.4274).$$

Experimental results vs theoretical prediction for $\Delta\Gamma_d$:

$$\frac{\Delta \Gamma_d^{HFAG}}{\Gamma_d} = (1.5 \pm 1.8)\%(\text{BABAR}(2006) \text{ and Belle}(2012)).$$

$$\frac{\Delta \Gamma_d^{D0}}{\Gamma_d} = (0.50 \pm 1.38)\%(2014).$$

$$\frac{\Delta \Gamma_d^{LHCb}}{\Gamma_d} = (-4.4 \pm 2.7)\%(2014).$$

$$\frac{\Delta \Gamma_d^{Theo}}{\Gamma_d} = (0.42 \pm 0.08)\%(\text{A. Lenz and U. Nierste, arXiv:1102.4274}).$$

Enhancements in $\Delta \Gamma_d$ arise from:

Enhancements in $\Delta \Gamma_d$ arise from: CKM Unitarity violations. Enhancements in $\Delta \Gamma_d$ arise from:

- CKM Unitarity violations.
- 2 New Physics at tree level decays.

Enhancements in $\Delta \Gamma_d$ arise from:

- CKM Unitarity violations.
- 2 New Physics at tree level decays.
- ($\bar{d}b$)($\bar{\tau}\tau$) operators.

NP contributions on $\Delta\Gamma_d$ can be introduced through unitarity violations of the CKM matrix

NP contributions on $\Delta\Gamma_d$ can be introduced through unitarity violations of the CKM matrix

let
$$\lambda_u = V_{ud}^* V_{ub}$$
, $\lambda_c = V_{cd}^* V_{cb}$, $\lambda_t = V_{td}^* V_{tb}$.

NP contributions on $\Delta\Gamma_d$ can be introduced through unitarity violations of the CKM matrix

let
$$\lambda_u = V_{ud}^* V_{ub}$$
, $\lambda_c = V_{cd}^* V_{cb}$, $\lambda_t = V_{td}^* V_{tb}$.

In the SM: $\lambda_u + \lambda_c + \lambda_t = 0$

NP contributions on $\Delta\Gamma_d$ can be introduced through unitarity violations of the CKM matrix

let
$$\lambda_u = V_{ud}^* V_{ub}$$
, $\lambda_c = V_{cd}^* V_{cb}$, $\lambda_t = V_{td}^* V_{tb}$.

In the SM: $\lambda_u + \lambda_c + \lambda_t = 0$

$$\lambda_u + \lambda_c + \lambda_t + \delta_{CKM} = 0$$

NP contributions on $\Delta\Gamma_d$ can be introduced through unitarity violations of the CKM matrix

let
$$\lambda_u = V_{ud}^* V_{ub}$$
, $\lambda_c = V_{cd}^* V_{cb}$, $\lambda_t = V_{td}^* V_{tb}$.

In the SM: $\lambda_u + \lambda_c + \lambda_t = 0$

$$\lambda_u + \lambda_c + \lambda_t + \delta_{CKM} = 0$$

As a very rough estimate (4th family studies)

$$\begin{array}{rcl} \delta^{d}_{CKM} & = & \lambda^{3} \\ \delta^{s}_{CKM} & = & \lambda^{3} \\ \lambda & \approx & 0.23 \end{array}$$
CKM Unitarity Violations

NP contributions on $\Delta\Gamma_d$ can be introduced through unitarity violations of the CKM matrix

let
$$\lambda_u = V_{ud}^* V_{ub}$$
, $\lambda_c = V_{cd}^* V_{cb}$, $\lambda_t = V_{td}^* V_{tb}$.

In the SM: $\lambda_u + \lambda_c + \lambda_t = 0$

$$\lambda_u + \lambda_c + \lambda_t + \delta_{CKM} = 0$$

As a very rough estimate (4th family studies)

$$\begin{array}{l} \implies \\ \text{enhancement by a factor of 4 in } \Delta\Gamma_d \\ \implies \\ \text{enhancement by a factor of 1.4 in } \Delta\Gamma_s. \end{array}$$

Enhancements in $\Delta \Gamma_d$ arise from:

- CKM Unitarity violations.
- 2 New Physics at tree level decays.
- ($\bar{d}b$)($\bar{\tau}\tau$) operators.

The effective Hamiltonian approach

$$\left(\frac{g_2}{2\sqrt{2}}\right)^2 \frac{1}{k^2 - M_W^2} \quad \approx \quad -\left(\frac{g_2}{2\sqrt{2}}\right)^2 \frac{1}{M_W^2} \equiv \frac{G_F}{\sqrt{2}}$$

The effective Hamiltonian approach

$$\left(\frac{g_2}{2\sqrt{2}}\right)^2 \frac{1}{k^2 - M_W^2} \quad \approx \quad -\left(\frac{g_2}{2\sqrt{2}}\right)^2 \frac{1}{M_W^2} \equiv \frac{G_F}{\sqrt{2}}$$

The effective Hamiltonian approach

$$\left(\frac{g_2}{2\sqrt{2}}\right)^2 \frac{1}{k^2 - M_W^2} \quad \approx \quad -\left(\frac{g_2}{2\sqrt{2}}\right)^2 \frac{1}{M_W^2} \equiv \frac{G_F}{\sqrt{2}}$$

 $Q_2^{qq'} = \left(\bar{d}_i \gamma_\mu P_L q_i\right) \left(\bar{q}_j' \gamma^\mu P_L b_j\right)$

The effective Hamiltonian approach

$$\left(\frac{g_2}{2\sqrt{2}}\right)^2 \frac{1}{k^2 - M_W^2} \quad \approx \quad -\left(\frac{g_2}{2\sqrt{2}}\right)^2 \frac{1}{M_W^2} \equiv \frac{G_F}{\sqrt{2}}$$

$$Q_2^{qq'} = \left(\bar{d}_i \gamma_\mu P_L q_i\right) \left(\bar{q}_j' \gamma^\mu P_L b_j\right)$$

QCD corrections

The effective Hamiltonian approach

$$\left(\frac{g_2}{2\sqrt{2}}\right)^2 \frac{1}{k^2 - M_W^2} \quad \approx \quad -\left(\frac{g_2}{2\sqrt{2}}\right)^2 \frac{1}{M_W^2} \equiv \frac{G_F}{\sqrt{2}}$$

$$Q_2^{qq'} = \left(\bar{d}_i \gamma_\mu P_L q_i\right) \left(\bar{q}_j' \gamma^\mu P_L b_j\right)$$

QCD corrections

After integrating out the W boson we get: $Q_1^{qq'} = \left(\bar{d}_j \gamma_\mu P_L q_i\right) \left(\bar{q}'_i \gamma^\mu P_L b_j\right)$

Gilberto Tetlalmatzi (IPPP Durham)

New Physics in $\Delta \Gamma_d$

$$H_{eff} = \frac{4G_F}{\sqrt{2}} \sum_{q,q'=u,c} \lambda_{qq'} \sum_{i=1,2} C_i^{q,q'} (M_W, \mu) Q_i^{qq'} + h.c.$$

$$H_{eff} = \frac{4G_F}{\sqrt{2}} \sum_{q,q'=u,c} \lambda_{qq'} \sum_{i=1,2} C_i^{q,q'} (M_W, \mu) Q_i^{qq'} + h.c.$$

with

$$\lambda_{qq'} = V_{qd}^* V_{q'b}.$$

$$H_{eff} = \frac{4G_F}{\sqrt{2}} \sum_{q,q'=u,c} \lambda_{qq'} \sum_{i=1,2} C_i^{q,q'} (M_W, \mu) Q_i^{qq'} + h.c.$$

with

$$\lambda_{qq'} = V_{qd}^* V_{q'b}.$$

Wilson Coefficients

$$C_{1}(\mu) = -\frac{3\alpha_{s}(\mu)}{4\pi}Ln\left(\frac{M_{W}^{2}}{\mu^{2}}\right)$$
$$C_{2}(\mu) = 1 + \frac{3}{N_{c}}\frac{\alpha_{s}(\mu)}{4\pi}Ln\left(\frac{M_{W}^{2}}{\mu^{2}}\right)$$

We investigated how constrained by New Physics C_1 and C_2 are.

We investigated how constrained by New Physics C_1 and C_2 are.

To analyze the effects of new physics the theoretical result

 $\mathcal{O}(C_1^{SM}, C_2^{SM}) \pm \sigma^{SM}$

We investigated how constrained by New Physics C_1 and C_2 are.

To analyze the effects of new physics the theoretical result

 $\mathcal{O}(C_1^{SM}, C_2^{SM}) \pm \sigma^{SM}$

is compared against the experimental one

 $\mathcal{O}^{\rm exp}\pm\sigma^{\rm exp}$

We investigated how constrained by New Physics C_1 and C_2 are.

To analyze the effects of new physics the theoretical result

 $\mathcal{O}(C_1^{SM},C_2^{SM})\pm\sigma^{SM}$

is compared against the experimental one

 $\mathcal{O}^{exp} \pm \sigma^{exp}$

taking into account a shift in $C_{1,2}$

 $\mathcal{O}(C_1^{SM}, C_2^{SM}) \longrightarrow \mathcal{O}(C_1^{SM} + \Delta C_1, C_2^{SM} + \Delta C_2)$

We investigated how constrained by New Physics C_1 and C_2 are.

To analyze the effects of new physics the theoretical result

 $\mathcal{O}(C_1^{SM},C_2^{SM})\pm\sigma^{SM}$

is compared against the experimental one

 $\mathcal{O}^{\rm exp}\pm\sigma^{\rm exp}$

taking into account a shift in $C_{1,2}$

 $\mathcal{O}(C_1^{SM}, C_2^{SM}) \longrightarrow \mathcal{O}(C_1^{SM} + \Delta C_1, C_2^{SM} + \Delta C_2)$

 $|\mathcal{O}(C_1^{SM} + \Delta C_1, C_2^{SM} + \Delta C_2) - \mathcal{O}^{exp}| < 1.64\sqrt{(\sigma^{exp})^2 + (\sigma^{SM})^2}$

We investigated how constrained by New Physics C_1 and C_2 are.

To analyze the effects of new physics the theoretical result

 $\mathcal{O}(C_1^{SM},C_2^{SM})\pm\sigma^{SM}$

is compared against the experimental one

 $\mathcal{O}^{exp} \pm \sigma^{exp}$

taking into account a shift in $C_{1,2}$

$$\mathcal{O}(C_1^{SM}, C_2^{SM}) \longrightarrow \mathcal{O}(C_1^{SM} + \Delta C_1, C_2^{SM} + \Delta C_2)$$

 $|\mathcal{O}(C_1^{SM} + \Delta C_1, C_2^{SM} + \Delta C_2) - \mathcal{O}^{exp}| < 1.64\sqrt{(\sigma^{exp})^2 + (\sigma^{SM})^2}$

Gilberto Tetlalmatzi (IPPP Durham)

 C_1^{cc} and C_2^{cc}

 $Q = (\bar{d}\gamma^{\mu}P_Lc)(\bar{c}\gamma_{\mu}P_Lb)$

 C_1^{cc} and C_2^{cc}

 $Q = (\bar{d}\gamma^{\mu}P_{L}c)(\bar{c}\gamma_{\mu}P_{L}b)$

 C_1^{cc} and C_2^{cc}

 $Q = (\bar{d}\gamma^{\mu}P_{L}c)(\bar{c}\gamma_{\mu}P_{L}b)$

Channels and Observables

• $B \rightarrow X_d \gamma \Longrightarrow$ Operator Mixing

 C_1^{cc} and C_2^{cc}

 $Q = (\bar{d}\gamma^{\mu}P_L c)(\bar{c}\gamma_{\mu}P_L b)$

- $B \rightarrow X_d \gamma \Longrightarrow$ Operator Mixing
- $Sin(2\beta_d) = Im(\frac{M_{12}^d}{|M_{12}^d|}) \Longrightarrow$ Double insertion of $\Delta B = 1$ operators.

 C_1^{cc} and C_2^{cc}

$$Q = (\bar{d}\gamma^{\mu}P_{L}c)(\bar{c}\gamma_{\mu}P_{L}b)$$

- $B \rightarrow X_d \gamma \Longrightarrow$ Operator Mixing
- $Sin(2\beta_d) = Im(\frac{M_{12}^d}{|M_{12}^d|}) \Longrightarrow$ Double insertion of $\Delta B = 1$ operators. • $a_{sl}^d = Im(\frac{\Gamma_{12}^d}{M_{12}^d})$

 C_1^{cc} and C_2^{cc}

$$Q=(ar{d}\gamma^\mu P_L c)(ar{c}\gamma_\mu P_L b)$$

- $B \to X_d \gamma \Longrightarrow$ Operator Mixing
- $Sin(2\beta_d) = Im(\frac{M_D^1}{|M_D^1|}) \Longrightarrow$ Double insertion of $\Delta B = 1$ operators.

Calculation of $\Delta \Gamma_{d,s}$

Calculation of $\Delta \Gamma_{d,s}$

$$H_{eff}^{\Delta B=1} = \frac{4G_F}{\sqrt{2}} \sum_{q,q'=u,c} \lambda_{qq'} \sum_{i=1,2} C_i^{q,q'} (M_W, \mu) Q_i^{qq'} + h.c.$$

Calculation of $\Delta \Gamma_{d,s}$

Calculation of $\Delta \Gamma_{d,s}$

Effect of C_1 , C_2 on $\Delta\Gamma$

Up to an enhancement of 1.5 possible.

Effect of C_1 , C_2 on $\Delta\Gamma$

Up to an enhancement of 1.5 possible.

Up to an enhancement of 1.6 possible.

Effect of C_1 , C_2 on $\Delta\Gamma$

Up to an enhancement of 1.5 possible.

Up to an enhancement of 1.6 possible.

Up to an enhancement of 16 posssible

Enhancements in $\Delta \Gamma_d$ arise from:

- CKM Unitarity violations.
- 2 New Physics at tree level decays.
- ($\bar{d}b$)($\bar{\tau}\tau$) operators.

The contributions from NP on $\Delta\Gamma_d$ can be estimated by analyzing effective operators well suppressed in the SM.

The contributions from NP on $\Delta\Gamma_d$ can be estimated by analyzing effective operators well suppressed in the SM.

The set of operators relevant to our study has the form $(\bar{d}b)(\bar{\tau}\tau)$.

The contributions from NP on $\Delta\Gamma_d$ can be estimated by analyzing effective operators well suppressed in the SM.

The set of operators relevant to our study has the form $(\bar{d}b)(\bar{\tau}\tau)$.

The contributions from NP on $\Delta\Gamma_d$ can be estimated by analyzing effective operators well suppressed in the SM.

The set of operators relevant to our study has the form $(\bar{d}b)(\bar{\tau}\tau)$.

The contributions from NP on $\Delta\Gamma_d$ can be estimated by analyzing effective operators well suppressed in the SM.

The set of operators relevant to our study has the form $(\bar{d}b)(\bar{\tau}\tau)$.

$$\begin{array}{lll} Q_{5,AB} &=& \left(d \, P_A \, b \right) \left(\bar{\tau} \, P_B \, \tau \right) \,, \\ Q_{V,AB} &=& \left(\bar{d} \, \gamma^\mu P_A \, b \right) \left(\bar{\tau} \, \gamma_\mu P_B \, \tau \right) \,, \\ Q_{T,A} &=& \left(\bar{d} \, \sigma^{\mu\nu} P_A \, b \right) \left(\bar{\tau} \, \sigma_{\mu\nu} P_A \, \tau \right) \,, \end{array}$$

The effective Hamiltonian involving these operators is

$$H_{ ext{eff}} = -rac{4G_F}{\sqrt{2}}\lambda^d_t\sum_{i,j}C_{i,j}(\mu)Q_{i,j}$$

Example: Vector contribution $Q_{V,AB} = (\bar{d} \gamma^{\mu} P_A b) (\bar{\tau} \gamma_{\mu} P_B \tau)$
Example: Vector contribution $Q_{V,AB} = (\bar{d} \gamma^{\mu} P_A b) (\bar{\tau} \gamma_{\mu} P_B \tau)$

Example: Vector contribution $Q_{V,AB} = (\bar{d} \gamma^{\mu} P_A b) (\bar{\tau} \gamma_{\mu} P_B \tau)$

•
$$B_d \rightarrow \tau^+ \tau^- \Longrightarrow Br(B_d \rightarrow \tau^+ \tau^-) < 4.1 \times 10^{-3}$$

$\left(bar{d} ight) (ar{ au} au)$ Operators

Example: Vector contribution $Q_{V,AB} = (\bar{d} \gamma^{\mu} P_A b) (\bar{\tau} \gamma_{\mu} P_B \tau)$

- $B_d \rightarrow \tau^+ \tau^- \Longrightarrow Br(B_d \rightarrow \tau^+ \tau^-) < 4.1 \times 10^{-3}$
- $B \to X_d \tau^+ \tau^-$ and $B^+ \to \pi^+ \tau^+ \tau^-$

Example: Vector contribution $Q_{V,AB} = (\bar{d} \gamma^{\mu} P_A b) (\bar{\tau} \gamma_{\mu} P_B \tau)$

•
$$B_d \to \tau^+ \tau^- \Longrightarrow Br(B_d \to \tau^+ \tau^-) < 4.1 \times 10^{-3}$$

• $B \to X_d \tau^+ \tau^-$ and $B^+ \to \pi^+ \tau^+ \tau^-$
 $\left(\frac{\tau_{B_s}}{\tau_{B_d}} - 1\right)_{SM}$ vs $\left(\frac{\tau_{B_s}}{\tau_{B_d}} - 1\right)_{exp} \Longrightarrow Br(B_d \to X) < 1.5\%$

Example: Vector contribution $Q_{V,AB} = (\bar{d} \gamma^{\mu} P_A b) (\bar{\tau} \gamma_{\mu} P_B \tau)$

Direct Bounds

•
$$B_d \to \tau^+ \tau^- \Longrightarrow Br(B_d \to \tau^+ \tau^-) < 4.1 \times 10^{-3}$$

• $B \to X_d \tau^+ \tau^-$ and $B^+ \to \pi^+ \tau^+ \tau^-$
 $\left(\frac{\tau_{B_s}}{\tau_{B_d}} - 1\right)_{SM}$ vs $\left(\frac{\tau_{B_s}}{\tau_{B_d}} - 1\right)_{exp} \Longrightarrow Br(B_d \to X) < 1.5\%$

Example: Vector contribution $Q_{V,AB} = (\bar{d} \gamma^{\mu} P_A b) (\bar{\tau} \gamma_{\mu} P_B \tau)$

Direct Bounds

•
$$B_d \to \tau^+ \tau^- \Longrightarrow Br(B_d \to \tau^+ \tau^-) < 4.1 \times 10^{-3}$$

• $B \to X_d \tau^+ \tau^-$ and $B^+ \to \pi^+ \tau^+ \tau^-$
 $\left(\frac{\tau_{B_s}}{\tau_{B_d}} - 1\right)_{SM} \text{vs} \left(\frac{\tau_{B_s}}{\tau_{B_d}} - 1\right)_{exp} \Longrightarrow Br(B_d \to X) < 1.5\%$

•
$$B^+ \to \pi^+ \mu^+ \mu^- \Longrightarrow Br(B^+ \to \pi^+ \mu^+ \mu^-)$$

Example: Vector contribution $Q_{V,AB} = (\bar{d} \gamma^{\mu} P_A b) (\bar{\tau} \gamma_{\mu} P_B \tau)$

Direct Bounds

•
$$B_d \to \tau^+ \tau^- \Longrightarrow Br(B_d \to \tau^+ \tau^-) < 4.1 \times 10^{-3}$$

• $B \to X_d \tau^+ \tau^-$ and $B^+ \to \pi^+ \tau^+ \tau^-$
 $\left(\frac{\tau_{B_s}}{\tau_{B_d}} - 1\right)_{SM} \text{vs} \left(\frac{\tau_{B_s}}{\tau_{B_d}} - 1\right)_{exp} \Longrightarrow Br(B_d \to X) < 1.5\%$

•
$$B^+ \to \pi^+ \mu^+ \mu^- \Longrightarrow Br(B^+ \to \pi^+ \mu^+ \mu^-)$$

$$Q_9 \quad = \quad \frac{e^2}{(4\pi)^2} \left(\bar{d} \gamma^{\mu} P_L b \right) \left(\bar{\ell} \gamma_{\mu} \ell \right) \,,$$

Example: Vector contribution $Q_{V,AB} = (\bar{d} \gamma^{\mu} P_A b) (\bar{\tau} \gamma_{\mu} P_B \tau)$

Direct Bounds

•
$$B_d \to \tau^+ \tau^- \Longrightarrow Br(B_d \to \tau^+ \tau^-) < 4.1 \times 10^{-3}$$

• $B \to X_d \tau^+ \tau^-$ and $B^+ \to \pi^+ \tau^+ \tau^-$
 $\left(\frac{\tau_{B_s}}{\tau_{B_d}} - 1\right)_{SM} \text{vs} \left(\frac{\tau_{B_s}}{\tau_{B_d}} - 1\right)_{exp} \Longrightarrow Br(B_d \to X) < 1.5\%$

•
$$B^+ \rightarrow \pi^+ \mu^+ \mu^- \Longrightarrow Br(B^+ \rightarrow \pi^+ \mu^+ \mu^-)$$

$$Q_{9} = \frac{e^{2}}{(4\pi)^{2}} \left(\bar{d} \gamma^{\mu} P_{L} b \right) \left(\bar{\ell} \gamma_{\mu} \ell \right) ,$$

$$C_{9,A}(m_{b}) = \left(0.1 - 0.2 \eta_{6}^{-1} \right) \left(C_{V,AL}(\Lambda) + C_{V,AR}(\Lambda) \right)$$

$(bar{d})\,\overline{(ar{ au} au)}$ Operators

$$\begin{array}{rcl} \Gamma_{12}^{d} & = & \Gamma_{12}^{d,SM} \tilde{\Delta_{d}} \\ \\ \frac{\Delta \Gamma_{d}}{\Delta \Gamma_{d}^{SM}} & \leq & |\tilde{\Delta_{d}}| \end{array}$$

$$\begin{array}{rcl} \Gamma_{12}^{d} & = & \Gamma_{12}^{d,SM} \tilde{\Delta_{d}} \\ \\ \frac{\Delta \Gamma_{d}}{\Delta \Gamma_{d}^{SM}} & \leq & |\tilde{\Delta_{d}}| \end{array}$$

Dependence of $\tilde{\Delta}_d$ on the Wilson coefficients

$$\begin{split} |\tilde{\Delta}_d|_{S,AB} &< 1 + (0.41^{+0.13}_{-0.08})|C_{S,AB}(m_b)|^2 \leq 1.6 \\ |\tilde{\Delta}_d|_{V,AB} &< 1 + (0.42^{+0.13}_{-0.08})|C_{V,AB}(m_b)|^2 \leq 3.7 \\ |\tilde{\Delta}_d|_{\tau,AB} &< 1 + (3.81^{+1.21}_{-0.74})|C_{\tau,A}(m_b)|^2 \leq 1.2 \end{split}$$

$$\begin{array}{rcl} \Gamma_{12}^{d} & = & \Gamma_{12}^{d,SM} \tilde{\Delta_{d}} \\ \\ \frac{\Delta \Gamma_{d}}{\Delta \Gamma_{d}^{SM}} & \leq & |\tilde{\Delta_{d}}| \end{array}$$

Dependence of $\tilde{\Delta}_d$ on the Wilson coefficients

$$\begin{split} |\tilde{\Delta}_d|_{S,AB} &< 1 + (0.41^{+0.13}_{-0.08})|C_{S,AB}(m_b)|^2 \leq 1.6 \\ |\tilde{\Delta}_d|_{V,AB} &< 1 + (0.42^{+0.13}_{-0.08})|C_{V,AB}(m_b)|^2 \leq 3.7 \\ |\tilde{\Delta}_d|_{\tau,AB} &< 1 + (3.81^{+1.21}_{-0.74})|C_{\tau,A}(m_b)|^2 \leq 1.2 \end{split}$$

$\left(bar{d} ight) (ar{ au} au)$ operators

Expected values for
$$Br(B \to \pi^+ \tau^+ \tau^-)$$

and
 $Br(B \to X_d \tau^+ \tau^-)$ in order to compete against $Br(B_d \to \tau^+ \tau^-)$

 $| ilde{\Delta_d}|_{V,AB} \quad \leq \quad 3.7 \Longrightarrow {\it Br}(B o X_d au^+ au^-) \le 2.6 imes 10^{-3}$

$$A = \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

$$A = \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

 $N^{++/--}$: # of events with two +/- muons from B hadron decays

$$A = \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

 $N^{++/--}$: # of events with two +/- muons from B hadron decays $A = A_{CP} + A_{bkg}$

$$A = \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

$$N^{++/--} : \# \text{ of events with two } +/- \text{ muons from B hadron decays}$$

$$A = A_{CP} + A_{bkg}$$

Standard interpretation: CP violation in mixing $A_{CP} \propto A_{sl}^b = C_d a_{sl}^d + C_s a_{sl}^s$

$$A = \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

$$N^{++/--} : \# \text{ of events with two } +/- \text{ muons from B hadron decays}$$

$$A = A_{CP} + A_{bkg}$$

Standard interpretation: CP violation in mixing $A_{CP} \propto A_{sl}^b = C_d a_{sl}^d + C_s a_{sl}^s$

 $A^{b,D0}_{sl}~=~(-0.787\pm0.172\pm0.093)\%(2011)~3.9~\sigma~$ deviation from the SM

$$A = \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

$$N^{++/--} : \# \text{ of events with two } +/- \text{ muons from B hadron decays}$$

$$A = A_{CP} + A_{bkg}$$

Standard interpretation: CP violation in mixing $A_{CP} \propto A_{sl}^b = C_d a_{sl}^d + C_s a_{sl}^s$

 $A^{b,D0}_{sl}~=~(-0.787\pm0.172\pm0.093)\%(2011)~3.9~\sigma~$ deviation from the SM

Borissov and Hoeneisen $A_{CP} \propto C_d a_{sl}^d + C_s a_{sl}^s + C_{\Gamma_d} \frac{\Delta \Gamma_d}{\Gamma_d} + C_{\Gamma_s} \frac{\Delta \Gamma_s}{\Gamma_s}$ Phys. Rev. D 87, 074020

$$A = \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

$$N^{++/--} : \# \text{ of events with two } +/- \text{ muons from B hadron decays}$$

$$A = A_{CP} + A_{bkg}$$

Standard interpretation: CP violation in mixing $A_{CP} \propto A_{sl}^b = C_d a_{sl}^d + C_s a_{sl}^s$

$$A^{b,D0}_{sl}~=~(-0.787\pm0.172\pm0.093)\%(2011)~3.9~\sigma~$$
 deviation from the SM

Borissov and Hoeneisen $A_{CP} \propto C_d a_{sl}^d + C_s a_{sl}^s + C_{\Gamma_d} \frac{\Delta \Gamma_d}{\Gamma_d} + C_{\Gamma_s} \frac{\Delta \Gamma_s}{\Gamma_s}$ Phys. Rev. D 87, 074020 CP violation in mixing

$$A = \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

$$N^{++/--} : \# \text{ of events with two } +/- \text{ muons from B hadron decays}$$

$$A = A_{CP} + A_{bkg}$$

Standard interpretation: CP violation in mixing $A_{CP} \propto A_{sl}^b = C_d a_{sl}^d + C_s a_{sl}^s$

$$A^{b,D0}_{sl}~=~(-0.787\pm0.172\pm0.093)\%(2011)~3.9~\sigma~$$
 deviation from the SM

Borissov and Hoeneisen $A_{CP} \propto C_d a_{sl}^d + C_s a_{sl}^s + C_{\Gamma_d} \frac{\Delta \Gamma_d}{\Gamma_d} + C_{\Gamma_s} \frac{\Delta \Gamma_s}{\Gamma_s}$ Phys. Rev. D 87, 074020 CP violation in mixing+

$$A = \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

$$N^{++/--} : \# \text{ of events with two } +/- \text{ muons from B hadron decays}$$

$$A = A_{CP} + A_{bkg}$$

Standard interpretation: CP violation in mixing $A_{CP} \propto A_{sl}^b = C_d a_{sl}^d + C_s a_{sl}^s$

$$A^{b,D0}_{sl}~=~(-0.787\pm0.172\pm0.093)\%(2011)~3.9~\sigma~$$
 deviation from the SM

Borissov and Hoeneisen $A_{CP} \propto C_d a_{sl}^d + C_s a_{sl}^s + C_{\Gamma_d} \frac{\Delta \Gamma_d}{\Gamma_d} + C_{\Gamma_s} \frac{\Delta \Gamma_s}{\Gamma_s}$ Phys. Rev. D 87, 074020

CP violation in mixing+CP violation in interference between mixing and decay.

$$A = \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

$$N^{++/--} : \# \text{ of events with two } +/- \text{ muons from B hadron decays}$$

$$A = A_{CP} + A_{bkg}$$

Standard interpretation: CP violation in mixing $A_{CP} \propto A_{sl}^b = C_d a_{sl}^d + C_s a_{sl}^s$

$$A^{b,D0}_{sl}~=~(-0.787\pm0.172\pm0.093)\%(2011)~3.9~\sigma~$$
 deviation from the SM

Borissov and Hoeneisen $A_{CP} \propto C_d a_{sl}^d + C_s a_{sl}^s + C_{\Gamma_d} \frac{\Delta \Gamma_d}{\Gamma_d} + C_{\Gamma_s} \frac{\Delta \Gamma_s}{\Gamma_s}$ Phys. Rev. D 87, 074020

CP violation in mixing+CP violation in interference between mixing and decay.

$$a_{sl}^d = (-0.62 \pm 0.43)\% \ a_{sl}^s = (-0.82 \pm 0.99)\% \ \frac{\Delta\Gamma_d}{\Gamma_d} = (0.50 \pm 1.38)\%$$
D0 (2014)

$$A = \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

$$N^{++/--} : \# \text{ of events with two } +/- \text{ muons from B hadron decays}$$

$$A = A_{CP} + A_{bkg}$$

Standard interpretation: CP violation in mixing $A_{CP} \propto A_{sl}^b = C_d a_{sl}^d + C_s a_{sl}^s$

$$A^{b,D0}_{sl}~=~(-0.787\pm0.172\pm0.093)\%(2011)~3.9~\sigma~$$
 deviation from the SM

Borissov and Hoeneisen $A_{CP} \propto C_d a_{sl}^d + C_s a_{sl}^s + C_{\Gamma_d} \frac{\Delta \Gamma_d}{\Gamma_d} + C_{\Gamma_s} \frac{\Delta \Gamma_s}{\Gamma_s}$ Phys. Rev. D 87, 074020

CP violation in mixing+CP violation in interference between mixing and decay.

$$a_{sl}^d = (-0.62 \pm 0.43)\% \ a_{sl}^s = (-0.82 \pm 0.99)\% \ \frac{\Delta\Gamma_d}{\Gamma_d} = (0.50 \pm 1.38)\%$$
D0 (2014)

Phys. Rev. D 89, 012002 (2014)

$$A = \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

$$N^{++/--} : \# \text{ of events with two } +/- \text{ muons from B hadron decays}$$

$$A = A_{CP} + A_{bkg}$$

Standard interpretation: CP violation in mixing $A_{CP} \propto A_{sl}^b = C_d a_{sl}^d + C_s a_{sl}^s$

$$A^{b,D0}_{sl}~=~(-0.787\pm0.172\pm0.093)\%(2011)~3.9~\sigma~$$
 deviation from the SM

Borissov and Hoeneisen $A_{CP} \propto C_d a_{sl}^d + C_s a_{sl}^s + C_{\Gamma_d} \frac{\Delta \Gamma_d}{\Gamma_d} + C_{\Gamma_s} \frac{\Delta \Gamma_s}{\Gamma_s}$ Phys. Rev. D 87, 074020

CP violation in mixing+CP violation in interference between mixing and decay.

$$a_{sl}^d = (-0.62 \pm 0.43)\% \ a_{sl}^s = (-0.82 \pm 0.99)\% \ \frac{\Delta\Gamma_d}{\Gamma_d} = (0.50 \pm 1.38)\%$$
D0 (2014)

Phys. Rev. D 89, 012002 (2014)

3.0 σ deviation from the SM

New Physics in $\Delta \Gamma_d$

• We have investigated the room for New Physics in $\Delta\Gamma_d$

- We have investigated the room for New Physics in $\Delta\Gamma_d$
- A priori a large enhancement in $\Delta\Gamma_d$ in contrast for $\Delta\Gamma_s$ BSM effects cannot exceed the size of the hadronic uncertainties.

- We have investigated the room for New Physics in $\Delta\Gamma_d$
- A priori a large enhancement in $\Delta\Gamma_d$ in contrast for $\Delta\Gamma_s$ BSM effects cannot exceed the size of the hadronic uncertainties.

$$\frac{\Delta \Gamma}{\Delta \Gamma_{SM}} \leq \left\{ \begin{array}{ll} 4 & \quad {\rm CKM \ unitarity \ violations.} \\ 16 & \quad {\rm Current-current \ operators.} \\ 3.7 & \quad (bd)(\tau\tau) \ {\rm operators.} \end{array} \right.$$

- We have investigated the room for New Physics in $\Delta\Gamma_d$
- A priori a large enhancement in $\Delta\Gamma_d$ in contrast for $\Delta\Gamma_s$ BSM effects cannot exceed the size of the hadronic uncertainties.

$$\frac{\Delta\Gamma}{\Delta\Gamma_{SM}} \leq \left\{ \begin{array}{ll} 4 & \mbox{CKM unitarity violations.} \\ 16 & \mbox{Current-current operators.} \\ 3.7 & \mbox{(bd)}(\tau\tau) \mbox{ operators.} \end{array} \right.$$

• The interference contribution to the like sign dimuon asymmetry comes from Γ_{12}^{cc} rather than from $\Delta\Gamma_d$.

- We have investigated the room for New Physics in $\Delta\Gamma_d$
- A priori a large enhancement in $\Delta\Gamma_d$ in contrast for $\Delta\Gamma_s$ BSM effects cannot exceed the size of the hadronic uncertainties.

$$\frac{\Delta\Gamma}{\Delta\Gamma_{SM}} \leq \left\{ \begin{array}{ll} 4 & \mbox{CKM unitarity violations.} \\ 16 & \mbox{Current-current operators.} \\ 3.7 & \mbox{(bd)}(\tau\tau) \mbox{ operators.} \end{array} \right.$$

• The interference contribution to the like sign dimuon asymmetry comes from Γ_{12}^{cc} rather than from $\Delta\Gamma_d$.

Main differences:

- We have investigated the room for New Physics in $\Delta\Gamma_d$
- A priori a large enhancement in $\Delta\Gamma_d$ in contrast for $\Delta\Gamma_s$ BSM effects cannot exceed the size of the hadronic uncertainties.

$$\frac{\Delta\Gamma}{\Delta\Gamma_{SM}} \leq \left\{ \begin{array}{ll} 4 & \quad {\rm CKM} \mbox{ unitarity violations.} \\ 16 & \quad {\rm Current-current \ operators.} \\ 3.7 & \quad (bd)(\tau\tau) \mbox{ operators.} \end{array} \right.$$

• The interference contribution to the like sign dimuon asymmetry comes from Γ_{12}^{cc} rather than from $\Delta\Gamma_d$.

Main differences:

 $2|\lambda_c^2\Gamma_{12}^{cc}|$ is a bit bigger than $\Delta\Gamma_d$ in the SM

- We have investigated the room for New Physics in $\Delta\Gamma_d$
- A priori a large enhancement in $\Delta\Gamma_d$ in contrast for $\Delta\Gamma_s$ BSM effects cannot exceed the size of the hadronic uncertainties.

$$\frac{\Delta\Gamma}{\Delta\Gamma_{SM}} \leq \left\{ \begin{array}{ll} 4 & \quad {\rm CKM \ unitarity \ violations.} \\ 16 & \quad {\rm Current-current \ operators.} \\ 3.7 & \quad (bd)(\tau\tau) \ {\rm operators.} \end{array} \right.$$

• The interference contribution to the like sign dimuon asymmetry comes from Γ_{12}^{cc} rather than from $\Delta\Gamma_d$.

Main differences:

 $2|\lambda_c^2\Gamma_{12}^{cc}|$ is a bit bigger than $\Delta\Gamma_d$ in the SM

There are different phases

 $Sin(2\beta + 2\theta_{\lambda_c})$

attached with the components of $\Delta \Gamma_d$.

New Physics in $\Delta\Gamma_d$

 C_1^{uc} and C_2^{uc}

 $Q = (\bar{d}\gamma^{\mu}P_L u)(\bar{c}\gamma_{\mu}P_L b)$

 C_1^{uc} and C_2^{uc}

 $Q = (\bar{d}\gamma^{\mu}P_L u)(\bar{c}\gamma_{\mu}P_L b)$

Channels and Observables

 C_1^{uc} and C_2^{uc}

$$Q = (\bar{d}\gamma^{\mu}P_{L}u)(\bar{c}\gamma_{\mu}P_{L}b)$$

Channels and Observables

•
$$\bar{B}^0 \to D^+\pi^- \Longrightarrow R_{\bar{B}^0 \to D^{*+}l^-\bar{\nu}_l} = \frac{\Gamma(\bar{B}^0 \to D^{*+}\pi^-)}{d\Gamma(\bar{B}^0 \to \pi^+l^-\bar{\nu}_l)/dq^2\Big|_{q^2=0}}$$

 C_1^{uc} and C_2^{uc}

 $Q = (\bar{d}\gamma^{\mu}P_L u)(\bar{c}\gamma_{\mu}P_L b)$

Channels and Observables

•
$$\bar{B}^0 \to D^+\pi^- \Longrightarrow R_{\bar{B}^0 \to D^{*+}l^-\bar{\nu}_l} = \frac{\Gamma(\bar{B}^0 \to D^{*+}\pi^-)}{d\Gamma(\bar{B}^0 \to \pi^+l^-\bar{\nu}_l)/dq^2|_{q^2=0}}$$

•
$$B^0 \to D^{(*)0} h^0 \Longrightarrow S_{D^{(*)0} h^0}$$
C_1^{uc} and C_2^{uc}

 $Q = (\bar{d}\gamma^{\mu}P_L u)(\bar{c}\gamma_{\mu}P_L b)$

Channels and Observables

•
$$\bar{B}^0 \to D^+\pi^- \Longrightarrow R_{\bar{B}^0 \to D^{*+}l^-\bar{\nu}_l} = \frac{\Gamma(\bar{B}^0 \to D^{*+}\pi^-)}{d\Gamma(\bar{B}^0 \to \pi^{+}l^-\bar{\nu}_l)/dq^2|_{q^2=0}}$$

•
$$B^0 \to D^{(*)0} h^0 \Longrightarrow S_{D^{(*)0} h^0}$$

• $\Gamma_{tot}(B_d)$

 C_1^{uc} and C_2^{uc}

 $Q = (\bar{d}\gamma^{\mu}P_L u)(\bar{c}\gamma_{\mu}P_L b)$

Channels and Observables

•
$$\bar{B}^0 \to D^+\pi^- \Longrightarrow R_{\bar{B}^0 \to D^{*+}l^-\bar{\nu}_l} = \frac{\Gamma(\bar{B}^0 \to D^{*+}\pi^-)}{d\Gamma(\bar{B}^0 \to \pi^+l^-\bar{\nu}_l)/dq^2|_{q^2=0}}$$

•
$$B^0 \to D^{(*)0} h^0 \Longrightarrow S_{D^{(*)0} h^0}$$

Γ_{tot}(B_d)

 C_1^{uu} and C_2^{uu}

 $Q = (\bar{d}\gamma^{\mu}P_L u)(\bar{u}\gamma_{\mu}P_L b)$

 C_1^{uu} and C_2^{uu}

 $Q = (\bar{d}\gamma^{\mu}P_L u)(\bar{u}\gamma_{\mu}P_L b)$

Channels and Observables

 C_1^{uu} and C_2^{uu}

 $Q = (\bar{d}\gamma^{\mu}P_L u)(\bar{u}\gamma_{\mu}P_L b)$

Channels and Observables

•
$$B^- \to \pi^- \pi^0 \Longrightarrow R_{\pi^- \pi^0} = \frac{\Gamma(B^- \to \pi^- \pi^0)}{d\Gamma(\bar{B}^0 \to \pi^+ l^- \bar{\nu}_l)/dq^2 \Big|_{q^2=0}}$$

 C_1^{uu} and C_2^{uu}

 $Q=(\bar{d}\gamma^{\mu}P_L u)(\bar{u}\gamma_{\mu}P_L b)$

Channels and Observables

•
$$B^- \to \pi^- \pi^0 \Longrightarrow R_{\pi^- \pi^0} = \frac{\Gamma(B^- \to \pi^- \pi^0)}{d\Gamma(\bar{B}^0 \to \pi^+ l^- \bar{\nu}_l)/dq^2 |_{q^2=0}}$$

• $B^0 \to \pi^- \pi^+$ Indirect CP asymmetry

 C_1^{uu} and C_2^{uu}

 $Q = (\bar{d}\gamma^{\mu}P_L u)(\bar{u}\gamma_{\mu}P_L b)$

Channels and Observables

•
$$B^- \to \pi^- \pi^0 \Longrightarrow R_{\pi^- \pi^0} = \frac{\Gamma(B^- \to \pi^- \pi^0)}{d\Gamma(\bar{B}^0 \to \pi^+ I^- \bar{\nu}_I)/dq^2|_{q^2=0}}$$

- $B^0 \rightarrow \pi^- \pi^+$ Indirect CP asymmetry
- $B \rightarrow \rho \pi$ Indirect CP Asymmetry

 C_1^{uu} and C_2^{uu}

 $Q = (\bar{d}\gamma^{\mu}P_L u)(\bar{u}\gamma_{\mu}P_L b)$

Channels and Observables

•
$$B^- \to \pi^- \pi^0 \Longrightarrow R_{\pi^- \pi^0} = \frac{\Gamma(B^- \to \pi^- \pi^0)}{d\Gamma(\bar{B}^0 \to \pi^+ l^- \bar{\nu}_l)/dq^2 |_{q^2=0}}$$

- $B^0 \rightarrow \pi^- \pi^+$ Indirect CP asymmetry
- $B \rightarrow \rho \pi$ Indirect CP Asymmetry

•
$$B^- \to \rho^- \rho^0$$
 and $\bar{B}^0 \to \rho^+ \rho^- \Longrightarrow R(\rho^- \rho^0 / \rho^+ \rho^-) = \frac{Br(B^- \to \rho^- \rho^0)}{Br(\bar{B}^0 \to \rho^+ \rho^-)}$

~

 C_1^{uu} and C_2^{uu}

 $Q = (\bar{d}\gamma^{\mu}P_L u)(\bar{u}\gamma_{\mu}P_L b)$

Channels and Observables

•
$$B^- \to \pi^- \pi^0 \Longrightarrow R_{\pi^- \pi^0} = \frac{\Gamma(B^- \to \pi^- \pi^0)}{d\Gamma(\bar{B}^0 \to \pi^+ l^- \bar{\nu}_l)/dq^2 |_{q^2=0}}$$

• $B^0 \to \pi^- \pi^+$ Indirect CP asymmetry

• $B \rightarrow \rho \pi$ Indirect CP Asymmetry

