## Flavoured Dark Matter Beyond Minimal Flavour Violation

#### Monika Blanke





Flavorful Ways to New Physics Freundenstadt – October 29, 2014

### Lots of Evidence for Dark Matter...



#### Lots of Evidence for Dark Matter...



### Lots of Evidence for Dark Matter...



M. Blanke Flavoured Dark Matter Beyond Minimal Flavour Violation

#### Lots of Evidence for Dark Matter...



### ... but What is It?



- non-baryonic
- gravitational interactions
- $\Box$  relic density  $\Omega_{DM}h^2 = 0.119$
- □ stable
- $\hfill\square$  neutral no em. charge and no colour
- □ cold (or warm...), non-relativistic

Theory prejudice: expect new particles at the weak scale



**"WIMP miracle":** weak scale annihilation cross section automatically gives correct relic density

### **Flavoured Dark Matter**

#### unknown DM properties

- coupling to SM particles?
- single particle or entire sector?
- analogy to ordinary SM matter
  flavoured?

#### Assumption:

dark matter carries flavour and comes in multiple copies



- 🖊 non-baryonic
- ✓ gauge singlet



#### New coupling to quarks:

$$\lambda^{ij} \bar{d}_{Ri} \chi_j \phi$$

 $\begin{array}{ll} d_{Ri} & \mbox{right-handed down quarks} \\ \chi_j & \mbox{DM particle, flavoured} \\ \phi & \mbox{new scalar, coloured} \end{array}$ 

#### How to Detect Flavoured Dark Matter



#### How to Detect Flavoured Dark Matter





#### How to Detect Flavoured Dark Matter



DM SMDM SMindirect detection



#### How to Detect Flavoured Dark Matter





precision flavour data

### The Idea is not New...

#### Flavoured DM received a lot of attention in recent years, see e.g.

- Flavoured Dark Matter in Direct Detection Experiments and at LHC J. KILE, A. SONI (APRIL 2011)
- Dark Matter from Minimal Flavor Violation B. BATELL, J. PRADLER, M. SPANNOWSKY (MAY 2011)
- Discovering Dark Matter Through Flavor Violation at the LHC J. F. KAMENIK, J. ZUPAN (JULY 2011)
- Flavored Dark Matter, and Its Implications for Direct Detection and Colliders P. AGRAWAL, S. BLANCHET, Z. CHACKO, C. KILIC (SEP. 2011)
- $\bullet$  Top-flavored dark matter and the forward-backward asymmetry A. KUMAR, S. TULIN (MAR. 2013)
- Flavored Dark Matter and R-Parity Violation B. BATELL, T. LIN, L.-T. WANG (SEP. 2013)

#### common to all these studies:

Minimal Flavour Violation

## Why Minimal Flavour Violation (MFV)?

- flavour violating observables in impressive agreement with SM
- new flavour violating interactions must be very suppressed
- naturally achieved if no new sources of flavour violation are introduced

Minimal Flavour Violation: flavour symmetry  $U(3)_q \times U(3)_u \times U(3)_d$ only broken by Yukawa couplings  $Y_u$ ,  $Y_d$ 

#### Consequences:

- smallness of flavour violating effects carries over to BSM sector
- all flavour violating effects parametrised in an expansion in  $Y_{u,d}$

### Going beyond MFV

#### MFV



#### ≻ HARMLESS

But not very exciting.

### Going beyond MFV

MFV



#### ≻ HARMLESS

But not very exciting.

#### non-MFV



> DANGEROUS

But interesting if you know how to handle it!

### Outline

Dark Minimal Flavour Violation – a Minimal Model

#### 2 Phenomenology

- Flavour Constraints
- Dark Matter Phenomenology
- Collider Signatures

#### 3 Conclusions

based on: P. Agrawal, MB, K. GEMMLER, JHEP 10 (2014) 072

### A Simple Model of Flavoured Dark Matter

Flavoured Dirac-fermionic DM  $\chi_j$  and couples to down quarks via a coloured scalar mediator

$$\mathcal{L}_{\rm NP} = i\bar{\chi}\partial\!\!\!/ \chi - m_{\chi}\bar{\chi}\chi + (D_{\mu}\phi)^{\dagger}(D^{\mu}\phi) - m_{\phi}^{2}\phi^{\dagger}\phi - \lambda^{ij}\bar{d}_{Ri}\chi_{j}\phi + \lambda_{H\phi}\phi^{\dagger}\phi H^{\dagger}H + \lambda_{\phi\phi}\phi^{\dagger}\phi\phi^{\dagger}\phi$$

Assumption: Flavour symmetry

$$U(3)_q \times U(3)_u \times U(3)_d \times U(3)_\chi$$

only broken by the SM Yukawa couplings and the DM-quark coupling  $\lambda$ 

## A Closer Look at DMFV

#### Dark matter mass

- $\bullet~U(3)_{\chi}$  symmetry ensures equal mass for all flavours at tree level
- special form of mass splitting at higher order (loop level)

$$m_{\chi_i} = m_{\chi} (\mathbb{1} + \eta \, \lambda^{\dagger} \lambda + \dots)_{ii}$$

#### Dark matter stability

• DM stability is guaranteed if DMFV is exact (unbroken  $\mathbb{Z}_3$  symmetry)

#### Parametrisation of DM-quark coupling

•  $U(3)_{\chi}$  symmetry helps to remove 9 parameters

$$\lambda = U_{\lambda} D_{\lambda}$$

 $\begin{array}{ll} U_\lambda & \mbox{unitary matrix, 3 mixing angles } s_{12}^\lambda, \, s_{13}^\lambda, \, s_{23}^\lambda \mbox{ and 3 phases} \\ D_\lambda & \mbox{ real diagonal matrix, e.g. } D_\lambda = \lambda_0 \cdot \mathbbm{1} + \mbox{diag}(\lambda_1, \lambda_2, -(\lambda_1 + \lambda_2)) \end{array}$ 

#### How to Detect Flavoured Dark Matter in...



### How to Constrain Flavoured Dark Matter by...



### New Contributions to Meson-Antimeson Mixing

• new box diagram for  $K^0 - \bar{K}^0$  mixing



 $\bullet$  dominant NP mixing amplitude for the K meson system

 $M_{12}^{K,\mathsf{new}} \sim (\xi_K^*)^2 F(x)$  where  $\xi_K = (\lambda \lambda^{\dagger})_{sd} = \sum_{i=1}^3 \lambda_{si} \lambda_{di}^*$ 

• analogous contributions to  $B_{d,s} - \bar{B}_{d,s}$  mixing

### "Flavour Safe" Dark Matter Scenarios

Strong constraints from  $K^0 - \bar{K}^0$  and  $B_{d,s} - \bar{B}_{d,s}$ mixing  $\succ \lambda$  has to be non-generic

- 3-flavour universality (black):  $\lambda_1 = \lambda_2 = 0$
- 2-flavour universalities
  - (blue):  $\lambda_1 = \lambda_2$ (red):  $\lambda_2 = -2\lambda_1$ (green):  $\lambda_2 = -1/2\lambda_1$
- small mixing (yellow): arbitrary D<sub>λ</sub>



 $\begin{array}{ll} \mbox{Recall: } D_{\lambda} = \lambda_0 \cdot \mathbbm{1} + \mbox{diag}(\lambda_1,\lambda_2,-(\lambda_1+\lambda_2)) \\ \mbox{fixed: } m_{\phi} = 850 \mbox{ GeV}, m_{\chi} = 200 \mbox{ GeV}, \lambda_0 = 1 \end{array}$ 

### "Flavour Safe" Dark Matter Scenarios

Strong constraints from  $K^0 - \bar{K}^0$  and  $B_{d,s} - \bar{B}_{d,s}$ mixing  $\succ \lambda$  has to be non-generic

- 3-flavour universality (black):  $\lambda_1 = \lambda_2 = 0$
- 2-flavour universalities
  - (blue):  $\lambda_1 = \lambda_2$ (red):  $\lambda_2 = -2\lambda_1$ (green):  $\lambda_2 = -1/2\lambda_1$
- small mixing (yellow): arbitrary D<sub>λ</sub>



 $\begin{array}{ll} \text{Recall:} \ D_{\lambda} = \lambda_0 \cdot \mathbbm{1} + \text{diag}(\lambda_1, \lambda_2, -(\lambda_1 + \lambda_2)) \\ \text{fixed:} \ m_{\phi} = 850 \, \text{GeV}, \\ m_{\chi} = 200 \, \text{GeV}, \\ \lambda_0 = 1 \end{array}$ 

### "Flavour Safe" Dark Matter Scenarios

Strong constraints from  $K^0 - \bar{K}^0$  and  $B_{d,s} - \bar{B}_{d,s}$ mixing  $\succ \lambda$  has to be non-generic

- 3-flavour universality (black):  $\lambda_1 = \lambda_2 = 0$
- 2-flavour universalities
  - (blue):  $\lambda_1 = \lambda_2$ (red):  $\lambda_2 = -2\lambda_1$ (green):  $\lambda_2 = -1/2\lambda_1$
- small mixing (yellow): arbitrary D<sub>λ</sub>



 $\begin{array}{ll} \mbox{Recall: } D_{\lambda} = \lambda_0 \cdot \mathbbm{1} + \mbox{diag}(\lambda_1,\lambda_2,-(\lambda_1+\lambda_2)) \\ \mbox{fixed: } m_{\phi} = 850 \mbox{ GeV}, m_{\chi} = 200 \mbox{ GeV}, \lambda_0 = 1 \end{array}$ 

### A Look at $B o X_s \gamma$

• effective Hamiltonian:

$$\mathcal{H}_{\text{eff}} \sim (C_7 Q_7 + C_7' Q_7' + \cdots)$$
$$Q_7 \sim \bar{s}_L \sigma^{\mu\nu} b_R F_{\mu\nu}$$
$$Q_7' \sim \bar{s}_R \sigma^{\mu\nu} b_L F_{\mu\nu}$$

• SM: C'<sub>7</sub> strongly suppressed by chiral structure of weak interactions

$$C_{7,\mathsf{SM}}' = \frac{m_s}{m_b} C_{7,\mathsf{SM}}$$

Figure from Altmannshofer, Straub (2013)



### A Look at $B o X_s \gamma$

• effective Hamiltonian:

$$\mathcal{H}_{\text{eff}} \sim (C_7 Q_7 + C_7' Q_7' + \cdots)$$
$$Q_7 \sim \bar{s}_L \sigma^{\mu\nu} b_R F_{\mu\nu}$$
$$Q_7' \sim \bar{s}_R \sigma^{\mu\nu} b_L F_{\mu\nu}$$

• SM: C'<sub>7</sub> strongly suppressed by chiral structure of weak interactions

$$C_{7,\mathsf{SM}}' = \frac{m_s}{m_b} C_{7,\mathsf{SM}}$$

new contribution

$$\delta C_7' \sim 0.04 \left[\frac{500 \,\mathrm{GeV}}{m_\phi}\right]^2 \sum_{i=1}^3 \lambda_{si} \lambda_{bi}^*$$

Figure from Altmannshofer, Straub (2013)



#### ➤ negligible!

### Negligible Effects in...

Rare decays  $(K \to \pi \nu \bar{\nu}, B_{s,d} \to \mu^+ \mu^-, B \to K^* \mu^+ \mu^- \dots)$ 

- no box contribution since no coupling to leptons in final states
- Z penguin contribution is zero due to chiral structure/new couplings to right-handed quarks only
- $\gamma$  penguin ( $\mu^+\mu^-$  final state) is negligible obtained from corresponding SUSY results

#### **Electric dipole elements**

- no one-loop contribution since chirality flips are required
- two-loop Barr-Zee diagram is CP-conserving

#### **Electroweak precision tests**

• loop contributions with additional suppression by  $U(1)_Y$  coupling

### Mass Spectrum in the Dark Sector

Meson mixing observables place strong constraints on the structure of  $\lambda$  but do not fix the mass spectrum  $m_{\chi_i}$  in the dark matter sector!

- *d*-flavored dark matter severely constrained by direct detection experiments and LHC searches 😟
- s- and b-flavored DM similar for flavor physics and direct detection
- advantages of *b*-flavored DM
  - b-jet signatures at colliders 😇
  - possible explanation of  $\gamma$  ray signal from galactic center  $\bigcirc$

Hooper et al. (2009)..., Agrawal et al. (2014)

#### > For the rest of this talk we assume *b*-flavoured dark matter

$$\begin{array}{llll} m_{\chi_b} &<& m_{\chi_d}, m_{\chi_s} \ D_{\lambda,33} &>& D_{\lambda,11}, D_{\lambda,22} \end{array}$$

Recall:  $m_{\chi_i} = m_{\chi} (1 + \eta D_{\lambda,ii}^2 + \dots)$ 

### Dark Matter as Thermal Relic

- WIMP production and annihilation in equilibrium in the early universe
- dark matter "freezes out" when annihilation rate  $\langle \sigma v \rangle$  drops below Hobble expansion rate
- relic abundance determined by solving Boltzmann equation for DM number density *n* at late times



$$\frac{dn}{dt} + 3Hn = -\underbrace{\langle \sigma v \rangle_{eff}}_{2.2 \times 10^{-26} \text{cm}^3/\text{s}} \left(n^2 - n_{eq}^2\right)$$

- n dark matter number density
- H Hubble constant
- $n_{eq}$  equilibrium number density of  $\chi$



✓ relic density

### Flavored Dark Matter Freeze-out

• freeze-out condition depends on life time of heavier dark flavours



- $\bullet$  for small mass splittings  $\lesssim 1\%$  multiple flavours present at freeze-out temperature
  - $\succ$  sum over all flavours i, j present at freeze-out

$$\langle \sigma v \rangle = \sum_{i,j} \langle \sigma v \rangle_{ij}$$

#### Flavoured Dark Matter in...



### **Direct Detection Experiments**

Spin-independent contribution to the WIMP-nucleus scattering

$$\sigma^{SI} = \frac{\mu_N^2}{\pi} |Zf_p + (A - Z)f_n|^2$$

constrained in direct detection experiments, e.g. LUX

#### relevant processes:



partial cancellation between tree/box and photon penguin contributions

## Single Flavor Freeze-out

 $\begin{array}{l} m_{\phi} = 850 \, {\rm GeV} \\ m_{\chi_{d,s}} > 1.1 m_{\chi_b} \\ {\rm relic \ abundance \ fixes \ } D_{\lambda,33} \end{array}$ 

constraints imposed:

- LUX only
- flavour only
- LUX & flavour



#### for low DM mass:

- combined constraint stronger than individual ones
- *lower* bound on  $\chi_i$  coupling to d quark,  $D_{\lambda,11}$

### **Recovering Flavour Scenarios**

1. Single flavour freeze-out



• only 12-degeneracy and small mixing scenario survive • small DM mass  $m_{\chi_b}$  implies sizeable non-universality  $\lambda_{1,2} \neq 0$ 

Recall:  $D_{\lambda} = \lambda_0 \cdot \mathbb{1} + \operatorname{diag}(\lambda_1, \lambda_2, -\lambda_1 - \lambda_2)$ 

#### Flavoured Dark Matter in...



### Flavoured Dark Matter at the LHC

DMFV > unbroken  $\mathbb{Z}_3$  > new particles have to be pair-produced

#### dark matter fermion $\chi_b$ and the heavier flavours $\chi_{d,s}$

- nearly degenerate due to DMFV
- *χ<sub>d,s</sub>* decay to *χ<sub>b</sub>* produces soft particles (jets, photons) + missing *E<sub>T</sub>* ≻ LHC monojet+ *E<sub>T</sub>* searches sensitive to *χ* pair production

#### coloured scalar mediator $\phi$

- pair-produced through QCD and through *t*-channel  $\chi_d$  exchange
- decay  $\phi \to q_i \chi_i$  with branching ratios given by  $D^2_{\lambda,ii}$ >  $bb + \not\!\!\!E_T$ ,  $bj + \not\!\!\!E_T$ ,  $jj + \not\!\!\!E_T$  signatures

### 

- CMS (& ATLAS) put strong bounds on bottom squark pair-production from  $bb + \not\!\!\!E_T$  CMS-PAS-SUS-13-018
- bound on cross-section can be applied to DMFV
  - production cross section enhanced by *t*-channel  $\chi_d$  exchange
  - $bb + \not\!\!\!E_T$  signal suppressed by  $\phi \to b\chi_b$  branching ratio



• the mechanism to generate the flavour structure of the SM is unknown, assuming a similar mechanism in the dark sector suggests

#### "Dark Minimal Flavour Violation"

additional  $U(3)_{\chi}$  flavour symmetry only broken by the new coupling matrix  $\lambda$ 

- DMFV (if exact) ensures stability of lightest Dark Flavour (otherwise additional symmetry is needed)
- flavour constraints imply non-generic structure for coupling matrix λ
  ➤ coupling universalities or small mixing angles
- non-trivial interplay of dark matter, flavour and LHC phenomenology

# Back-up

### **Dark Matter Stability**

Similar proof in MFV: BATELL, PRADLER, SPANNOWSKY (2011)

Consider  $\mathcal{O} \sim \chi \dots \bar{\chi} \dots \phi \dots \phi^{\dagger} \dots q_L \dots \bar{q}_L \dots u_R \dots \bar{u}_R \dots d_R \dots$ 

#### invariant under ...

- QCD if the number of  $SU(3)_c$  triplet minus the number of  $SU(3)_c$  antitriplets is a multiple of three
- flavour symmetry: include  $Y_u \dots Y_u^{\dagger} \dots Y_d \dots Y_d^{\dagger} \dots \lambda \dots \lambda^{\dagger} \dots$

$$\begin{array}{ll} \mathrm{I} & SU(3)_c & (N_\phi - N_{\phi^\dagger} + N_q + N_u + N_d - N_{\bar{q}} - N_{\bar{u}} - N_{\bar{d}}) \mod 3 = 0 \\ \mathrm{II} & U(3)_q & (N_q - N_{\bar{q}} + N_{Y_u} - N_{Y_u^\dagger} + N_{Y_d} - N_{Y_d^\dagger}) \mod 3 = 0 \\ \mathrm{III} & U(3)_u & (N_u - N_{\bar{u}} - N_{Y_u} + N_{Y_u^\dagger}) \mod 3 = 0 \\ \mathrm{IV} & U(3)_d & (N_d - N_{\bar{d}} - N_{Y_d} + N_{Y_d^\dagger} + N_\lambda - N_{\lambda^\dagger}) \mod 3 = 0 \\ \mathrm{V} & U(3)_\chi & (N_\chi - N_{\bar{\chi}} - N_\lambda + N_{\lambda^\dagger}) \mod 3 = 0 \end{array}$$

 $\sum \text{II}+\text{III}+\text{IV}+\text{V}-\text{I} \ \left(N_{\chi}-N_{\bar{\chi}}-N_{\phi}+N_{\phi^{\dagger}}\right) \ \text{mod} \ 3=0$ 

 $\succ \mathbb{Z}_3$  symmetry forbids  $\chi$  and  $\phi$  decays into SM fields

#### Multi Flavour Freeze-out – 13-Degeneracy



 $\succ$  lower bound on DM mass:  $\eta$ 

 $: m_{\chi_b} \gtrsim 95 \, \mathrm{GeV}$ 

### **Recovering Flavour Scenarios**

1. Single flavour freeze-out



• only 12-degeneracy and small mixing scenario survive • small DM mass  $m_{\chi_b}$  implies sizeable non-universality  $\lambda_{1,2} \neq 0$ 

Recall:  $D_{\lambda} = \lambda_0 \cdot \mathbb{1} + \operatorname{diag}(\lambda_1, \lambda_2, -\lambda_1 - \lambda_2)$ 

### **Recovering Flavour Scenarios**

2. Two flavour freeze-out



- 13- or 23-degeneracy scenario
- small DM mass  $m_{\chi_b}$  implies sizeable non-universality  $\lambda_{1,2} \neq 0$

Recall:  $D_{\lambda} = \lambda_0 \cdot \mathbb{1} + \text{diag}(\lambda_1, \lambda_2, -\lambda_1 - \lambda_2)$ 

### **Recovering Flavour Scenarios**

3. Three flavour freeze-out



- all flavor scenarios present
- small DM mass  $m_{\chi_b}$  implies sizeable non-universality  $\lambda_{1,2} \neq 0$

Recall:  $D_{\lambda} = \lambda_0 \cdot \mathbb{1} + \text{diag}(\lambda_1, \lambda_2, -\lambda_1 - \lambda_2)$ 

### **Constraints from Monojet Searches I**

- monojet searches sensitive to  $\chi$  pair-production with ISR hard jet
- recansting exp. bounds ATLAS-CONF-2012-147 CMS-PAS-EXO-12-048

• rather independent of  $m_{\chi}$ 



### **Constraints from Monojet Searches II**

- monojet searches also sensitive to  $\phi$  pair-production if decay products are soft
- constraint on the compressed region  $m_\chi \lesssim m_\phi$

