

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Universal New Physics Latent Space (2407.20315)

Anna Hallin, Gregor Kasieczka, Sabine Kraml, André Lessa, Louis Moureaux, **Tore von Schwartz**, David Shih

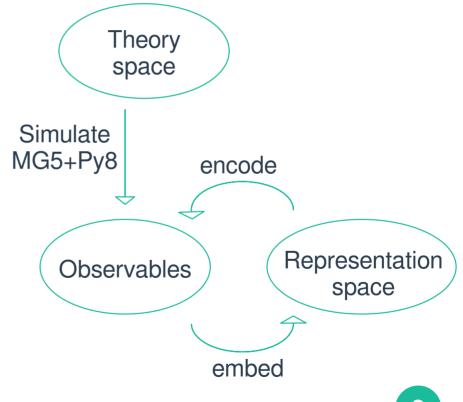
16.12.24

tore.von.schwartz@cern.ch

Glühweinworkshop 2024

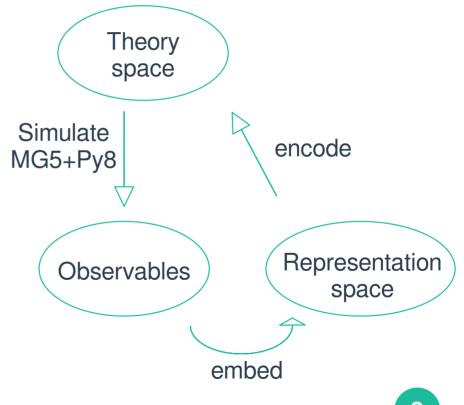
Dimensionality Reduction for Physical Data

- "Neural Embedding: Learning the Embedding of the Manifold of Phyics Data", S. E. Park et al. (2208.05484)
- Embedding in lower dimensional latent space while conserving energy mover's distance between events



Dimensionality Reduction for Physical Data

- Encode information about underlying theory instead of the actual events
- Learn embedding based on phenomenological similarities



Universal New Physics Latent Space

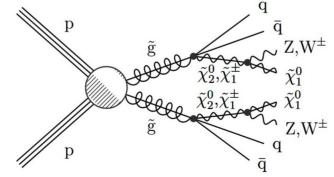
- New physics data available from simulations
- Embed data from different theories in same latent space
- Investigate phenomenological similarities in low-dimensional space

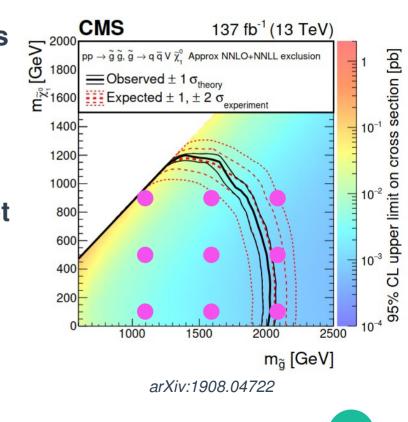


https://cds.cern.ch/record/1601971/files/ILCTDR-OUTREACH.pdf

Data Set

- Simulation of SUSY events for different mass parameters
- Events are gluino decays in proton-proton collisions at 13 TeV
- Use kinematic features of leading four jets, missing transverse energy and invariant dijet masses





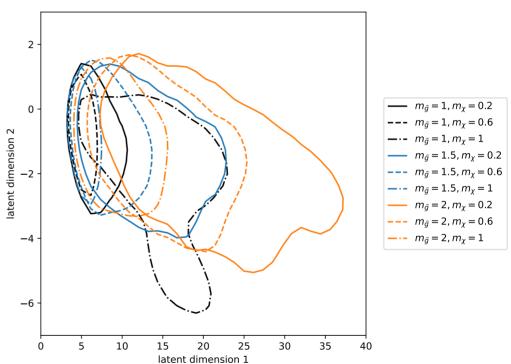
Baseline

 Embed data with autoencoder trained on mean squared error loss

$$\mathcal{L}_{MSE} = \frac{1}{N} \sum_{i}^{N} (x_i - \hat{x}_i)^2$$

- No clustering but slight shift in resulting structure
- Overlapping feature distributions

 overlapping distributions in latent space

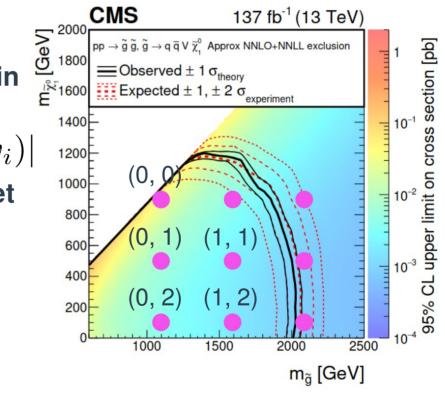


Neural Embedding (NE)

- Additional loss term to ensure clustering
- Conserve metric between pair of events in latent space (arXiv:2208.05484)

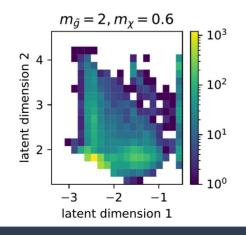
$$\mathcal{L}_{NE} \sim |d_{\mathcal{Y}}(\phi(u_i), \phi(v_i)) - d_{\mathcal{X}}(u_i, v_i)|$$

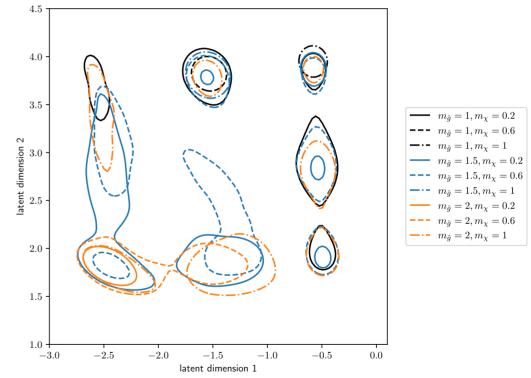
 Here: conserve distance between data set labels



Results Neural Embedding

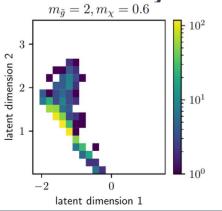
- Clustering not perfect but overall structure visible
- Arrangement of clusters similar to mass space
- Embedding accuracy of ~43%

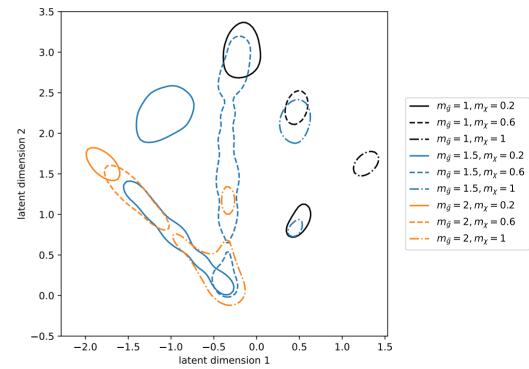




Training on Sets of Events

- Take sets of events from same theory as input
- Increases probability of the model to see distinguishable events
- Leads better structured latent space and accuracy of ~70%





Contrastive Learning

- Explicit and comparable data set labels not always given
 - → replace NE loss term with contrastive loss term

(Dimensionality reduction by learning an invariant mapping, R. Hadsell et al.)

$$\mathcal{L}_i = (1 - Y)\mathcal{L}_S(D_i) + Y\mathcal{L}_D(D_i)$$

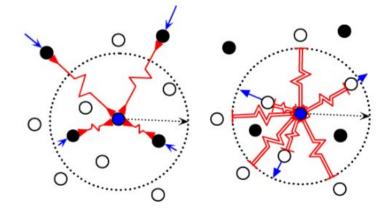
 Goal: cluster similar points and separate dissimilar points without knowing exact arrangement of data sets

Contrastive Learning

Exact choice of loss function

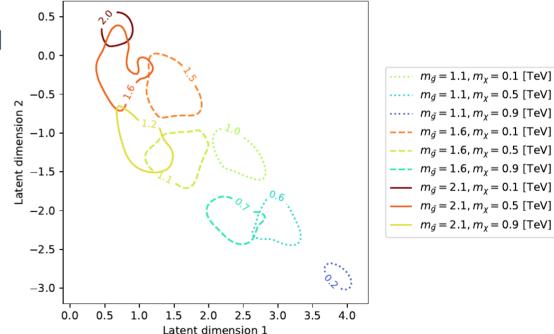
$$\mathcal{L}_{i} = (1 - Y)\frac{1}{2}D_{i}^{2} + Y\frac{1}{2}\max(0, m - D_{i})^{2}$$

- New margin parameter needed to deal with unbounded latent spaces
- Events from different theories with latent distance larger than margin parameter not longer repelled



Dimensionality reduction by learning an invariant mapping, R. Hadsell et al.

- Clearly visible clustering
- Latent space organisation based on mass difference
- Arrangement of clusters stable over multiple trainings
 - → based on physical properties



Dark Machines Data Set

- Application of this method to Dark Machines data set including a larger variety of processes (2105.14027)
- Chosen signals focus on hadronic activity with high missing energy
 - At least 4 (b-)jets with $p_T > 50 \text{ GeV}$
 - One (b-)jet with $p_T > 200 \text{ GeV}$
 - $H_T > 600 \text{ GeV}$
 - MET > 200 GeV and MET / $H_T \geq 0.2$
- Background data set containing SM events with same trigger requirements

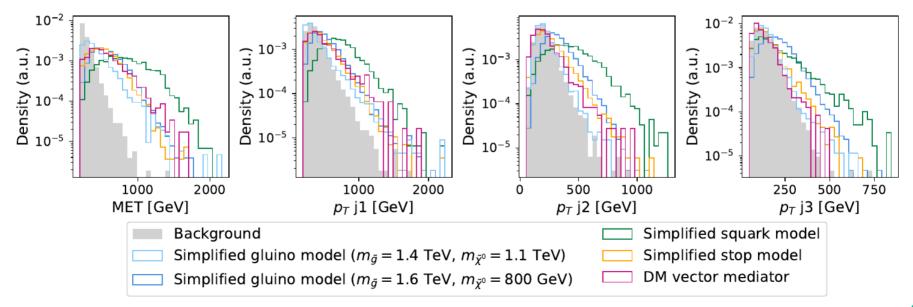
Dark Machines Data Set

- Five BSM models
- Including two gluino models with different mass configurations
- Third jet originating from ISR for all models except for gluino models

BSM scenario	Physical process and model parameters
DM Vector Mediator	$pp \rightarrow Z' \rightarrow \chi \chi$ • $m_{Z'} = 2$ TeV, $m_{\rm DM} = 50$ GeV
Gluino Simplified Models	$pp \rightarrow \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow qq + \tilde{\chi}_1^0$ • $m_{\tilde{g}} = 1.4 \text{ TeV}, \ m_{\chi^0} = 1.1 \text{ TeV}$ • $m_{\tilde{g}} = 1.6 \text{ TeV}, \ m_{\chi^0} = 0.8 \text{ TeV}$
Stop Simplified Model	$pp \to \tilde{t}\tilde{t}, \ \tilde{t} \to t + \tilde{\chi}_1^0$ • $m_{\tilde{t}} = 1 \text{ TeV}, \ m_{\chi^0} = 0.3 \text{ TeV}$
Squark Simplified Model	$pp \to \tilde{q}\tilde{q}, \ \tilde{q} \to q + \tilde{\chi}_1^0$ • $m_{\tilde{q}} = 1.8 \text{ TeV}, \ m_{\chi^0} = 0.8 \text{ TeV}$

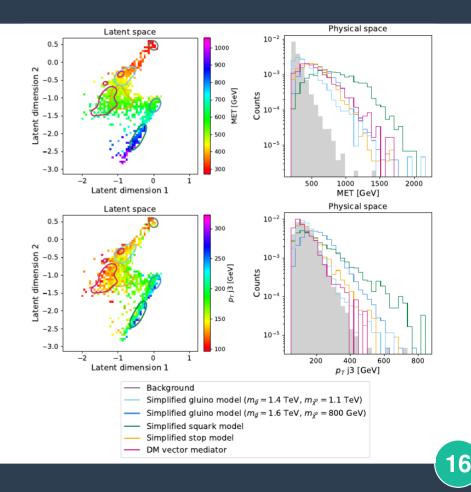
Dark Machines Data Set

- SM background MET distribution different compared to BSM models
- Hardest MET distribution for squark model, softest for light gluino



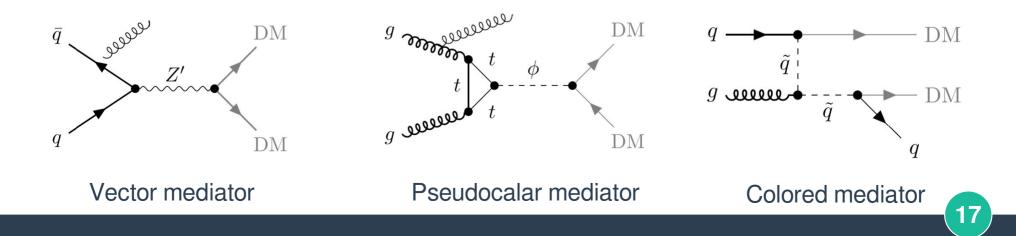
Results Dark Machines Data Set

- Embedding based on MET and p_T of third jet
- SM background, squark model and light gluino model separated best
- Similar models are clustered in the latent space



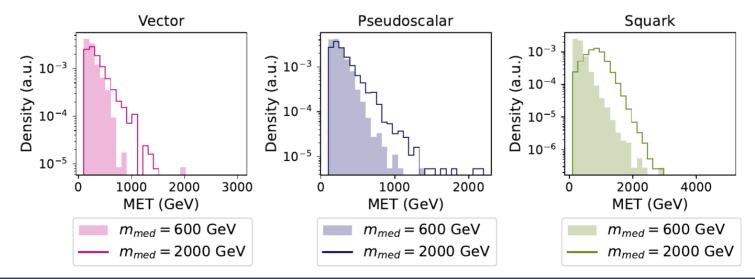
Mediator Data Set

- Simplified BSM theories with dark matter particle and BSM mediator particle
- Kinematic features of leading two jets used for training
- Simulation for different mass combinations



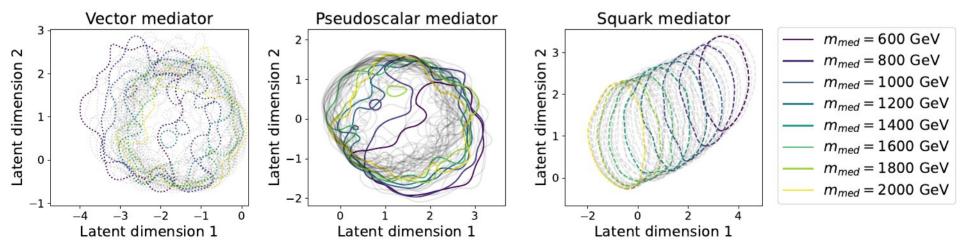
Mediator Data Set

- Similar MET peak for vector and pseudoscalar mediator for all mediator masses
- Shifting peak towards higher MET for squark mediator particles with larger mass



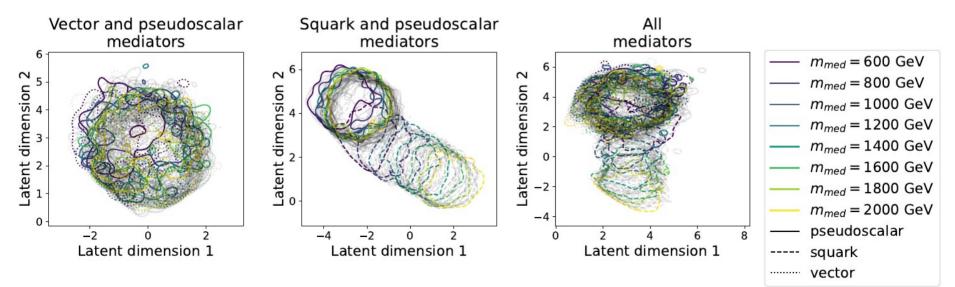
Results Mediator Data Set

- Separate trainings for different mediator particles
- Distributions of individual mass configurations heavily overlapping for vector and pseudoscalar mediator
- Better separation for squark mediator



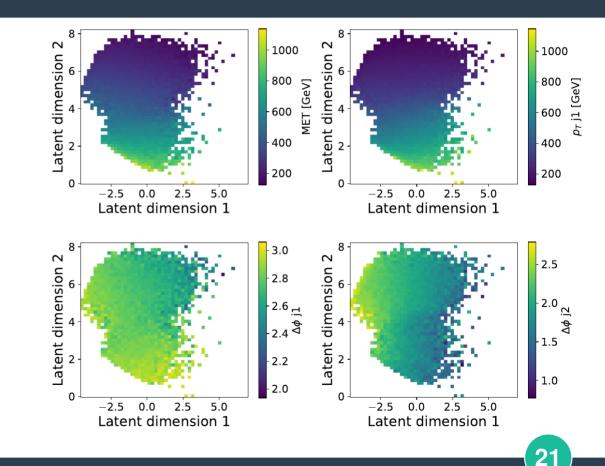
Results Mediator Data Set

- Embedding of different mediator types into one common latent space
- Global structure of different theories while maintaining internal arrangement



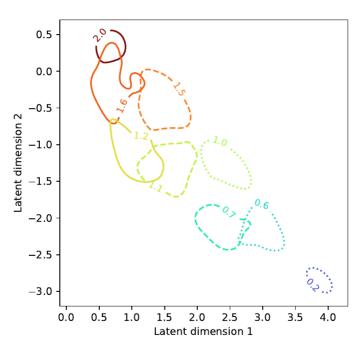
Comparing to Input Features

- Shown latent spaces for embedding of all mediator particles
- Connection between input features and latent space visible
- Embedding organized based on MET and $\Delta\phi_2$



Conclusion

- Learning similarities of theories based on their phenomenology
- Sets as input to abstract from individual events
- Setup applicable to various data sets even without explicit relation in theory space
- Latent space allows to connect low-dimensional representation with theory and feature space
- For more details check out 2407.20315



22

Reconstruction of Input Features

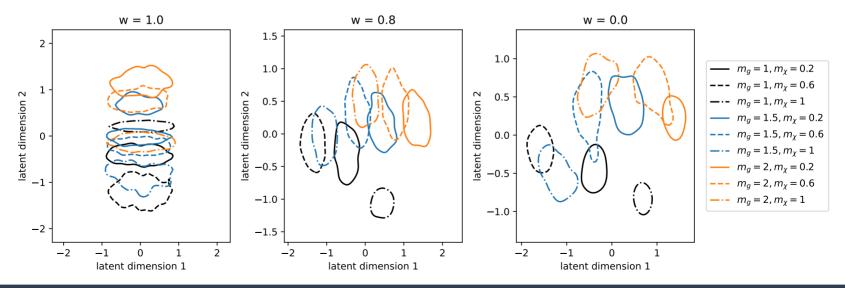
- Prevention of sparsely populated latent space regions for latent space interpolation
- Change model to variational autoencoder with Kullback-Leibler divergence

$$\mathcal{L} = w \cdot \mathcal{L}_{MSE} + (1 - w) \cdot \mathcal{L}_{CL} + \beta \cdot D_{KL}$$

• Forces a Gaussian latent space structure

Reconstruction of Input Features

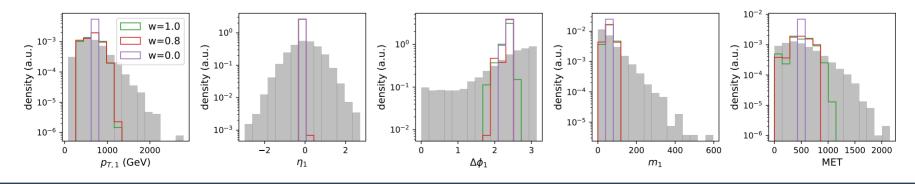
- Results for SUSY data with different loss weightings
- Lower weight improves separation and embedding accuracy
- Clustering already visible for higher weight



25

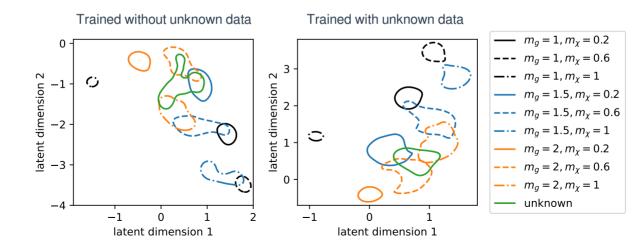
Reconstructing input features

- No reconstruction of the tails of the distributions for all weightings
- Highest weight of the MSE loss term results in best reconstruction
- Could be improved by changing model architecture or number of events per set



From Latent to Theory Space

- Reconstruct theory parameters from latent space distributions for unknown theory
- Prediction for every unknown sample based on kernel density estimation

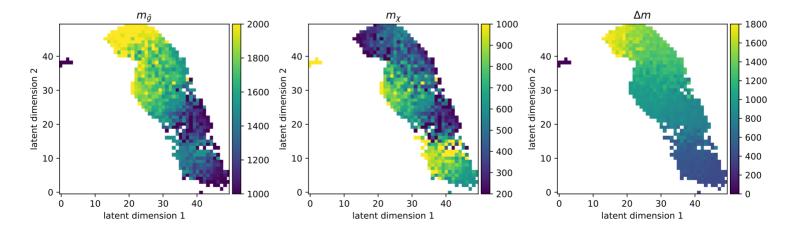


From Latent to Theory Space

- Gluino mass prediction extremely precise
- For a better understanding of the method further investigations necessary

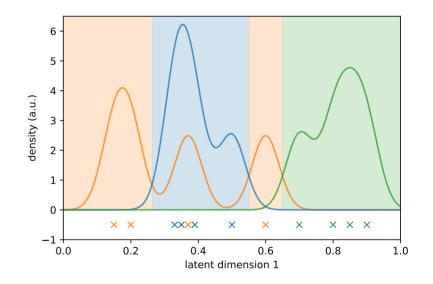
	Gluino mass (TeV)	Neutralino mass (TeV)	Mass difference (TeV)
True value	1.83	0.8	1.03
Estimation based on all data	1.82 ± 0.12	0.58 ± 0.15	1.25 ± 0.14
Estimation based on known data	1.81 ± 0.12	0.57 ± 0.17	1.25 ± 0.15

- Apply binning and color every bin based on mean of gluino mass, neutralino mass or mass difference of events mapped into it
 - → smoothest transition for mass difference

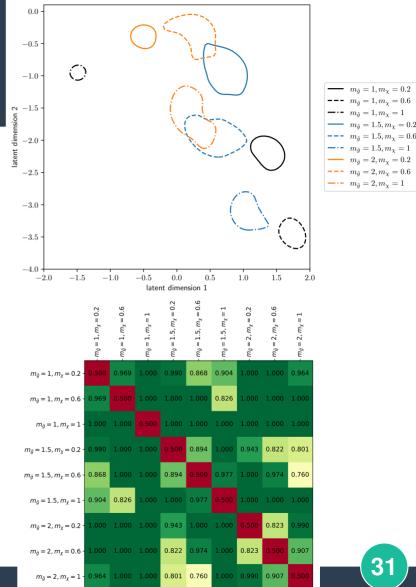


Performance Measurement

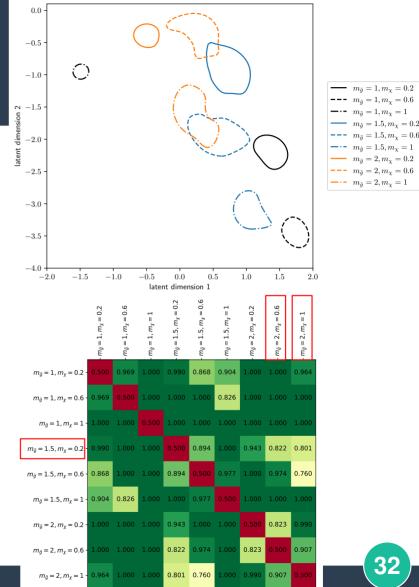
- Comparison with correct output not possible
- Assignment of latent space regions to specific classes based on kernel density estimation
- Allows calculation of "accuracy"



- Comparison of latent space to accuracies of binary classifiers
- Theories with lowest accuracy closest together and vice versa
 - → latent space based on phenomenological similarity of the theories



- Comparison of latent space to accuracies of binary classifiers
- Theories with lowest accuracy closest together and vice versa
 - → latent space based on phenomenological similarity of the theories



- Comparison of latent space to accuracies of binary classifiers
- Theories with lowest accuracy closest together and vice versa
 - → latent space based on phenomenological similarity of the theories

