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Dimensionality Reduction for Physical Data

● „Neural Embedding: Learning the 
Embedding of the Manifold of 
Phyics Data“, S. E. Park et al. 
(2208.05484)

● Embedding in lower dimensional 
latent space while conserving 
energy mover’s distance between 
events
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Dimensionality Reduction for Physical Data

● Encode information about underlying 
theory instead of the actual events

● Learn embedding based on 
phenomenological similarities
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Universal New Physics Latent Space

● New physics data available from 
simulations

● Embed data from different theories in 
same latent space

● Investigate phenomenological 
similarities in low-dimensional space

https://cds.cern.ch/record/1601971/files/ILCTDR-OUTREACH.pdf
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Data Set

● Simulation of SUSY events for different mass 
parameters

● Events are gluino decays in proton-proton 
collisions at 13 TeV

● Use kinematic features of leading four jets, 
missing transverse energy and invariant dijet 
masses

arXiv:1908.04722
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Baseline

● Embed data with autoencoder 
trained on mean squared error 
loss

● No clustering but slight shift in 
resulting structure

● Overlapping feature distributions
→ overlapping distributions in
     latent space
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Neural Embedding (NE)

● Additional loss term to ensure clustering
● Conserve metric between pair of events in 

latent space (arXiv:2208.05484)

● Here: conserve distance between data set 
labels
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Results Neural Embedding

● Clustering not perfect but overall 
structure visible

● Arrangement of clusters similar to 
mass space

● Embedding accuracy of ~43%
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Training on Sets of Events

● Take sets of events from same 
theory as input

● Increases probability of the model 
to see distinguishable events

● Leads better structured latent 
space and accuracy of ~70% 
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Contrastive Learning

● Explicit and comparable data set labels not always given

→ replace NE loss term with contrastive loss term
     (Dimensionality reduction by learning an invariant mapping, R. Hadsell et al.)

● Goal: cluster similar points and separate dissimilar points without 
knowing exact arrangement of data sets 
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Contrastive Learning

● Exact choice of loss function

● New margin parameter needed to deal with 
unbounded latent spaces

● Events from different theories with latent 
distance larger than margin parameter not 
longer repelled

Dimensionality reduction 
by learning an invariant 

mapping, R. Hadsell et al.



12

Results Contrastive Learning

● Clearly visible clustering
● Latent space organisation based 

on mass difference
● Arrangement of clusters stable 

over multiple trainings 
→ based on physical properties
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Dark Machines Data Set

● Application of this method to Dark Machines data set including a larger 
variety of processes (2105.14027)

● Chosen signals focus on hadronic activity with high missing energy
– At least 4 (b-)jets with pT > 50 GeV
– One (b-)jet with pT > 200 GeV
– HT > 600 GeV
– MET > 200 GeV and MET / HT ≥ 0.2

● Background data set containing SM events with same trigger 
requirements 
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Dark Machines Data Set

● Five BSM models
● Including two gluino models with 

different mass configurations
● Third jet originating from ISR for 

all models except for gluino 
models
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Dark Machines Data Set

● SM background MET distribution different compared to BSM models
● Hardest MET distribution for squark model, softest for light gluino
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● Embedding based on MET and pT of 
third jet

● SM background, squark model and 
light gluino model separated best

● Similar models are clustered in the 
latent space

Results Dark Machines Data Set
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Mediator Data Set

● Simplified BSM theories with dark matter particle and BSM mediator 
particle

● Kinematic features of leading two jets used for training
● Simulation for different mass combinations

Vector mediator Pseudocalar mediator Colored mediator
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Mediator Data Set

● Similar MET peak for vector and pseudoscalar mediator for all mediator 
masses

● Shifting peak towards higher MET for squark mediator particles with 
larger mass
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Results Mediator Data Set

● Separate trainings for different mediator particles
● Distributions of individual mass configurations heavily overlapping for 

vector and pseudoscalar mediator
● Better separation for squark mediator
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Results Mediator Data Set

● Embedding of different mediator types into one common latent space
● Global structure of different theories while maintaining internal 

arrangement
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Comparing to Input Features

● Shown latent spaces for 
embedding of all mediator 
particles

● Connection between input 
features and latent space 
visible

● Embedding organized based 
on MET and        
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Conclusion

● Learning similarities of theories based on their 
phenomenology

● Sets as input to abstract from individual events
● Setup applicable to various data sets even 

without explicit relation in theory space
● Latent space allows to connect low-dimensional 

representation with theory and feature space
● For more details check out 2407.20315 

https://arxiv.org/abs/2407.20315
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Reconstruction of Input Features 

● Prevention of sparsely populated latent space regions for 
latent space interpolation

● Change model to variational autoencoder with Kullback-
Leibler divergence

● Forces a Gaussian latent space structure
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Reconstruction of Input Features 

● Results for SUSY data with different loss weightings
● Lower weight improves separation and embedding accuracy
● Clustering already visible for higher weight
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Reconstructing input features

● No reconstruction of the tails of the distributions for all 
weightings

● Highest weight of the MSE loss term results in best 
reconstruction

● Could be improved by changing model architecture or number of 
events per set
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From Latent to Theory Space

● Reconstruct theory parameters from latent space 
distributions for unknown theory

● Prediction for every unknown sample based on kernel 
density estimation
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From Latent to Theory Space

Gluino mass (TeV) Neutralino mass (TeV) Mass diff erence (TeV)

True value

Estimation based on all 
data
Estimation based on 
known data

● Gluino mass prediction extremely precise
● For a better understanding of the method further 

investigations necessary
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Results Contrastive Learning

● Apply binning and color every bin based on mean of gluino 
mass, neutralino mass or mass difference of events mapped 
into it

→ smoothest transition for mass difference
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Performance Measurement

● Comparison with correct output 
not possible

● Assignment of latent space 
regions to specific classes based 
on kernel density estimation

● Allows calculation of “accuracy“
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Results Contrastive Learning

● Comparison of latent space to 
accuracies of binary classifiers

● Theories with lowest accuracy 
closest together and vice versa

→ latent space based on 
phenomenological similarity of the 
theories
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Results Contrastive Learning

● Comparison of latent space to 
accuracies of binary classifiers

● Theories with lowest accuracy 
closest together and vice versa

→ latent space based on 
phenomenological similarity of the 
theories
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Results Contrastive Learning

● Comparison of latent space to 
accuracies of binary classifiers

● Theories with lowest accuracy 
closest together and vice versa

→ latent space based on 
phenomenological similarity of the 
theories
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