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Analysis Goal

● look for resonances in the dijet 
mass spectrum
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Signal shape shown for one of the methods



Signal Models
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Prongs      A → BC
 

(1+2)        Q* → qW'
 

(2+2)        X → YY' → 4q
 

(3+3)        W' → B't → Bzt
 

(2+4)        Wkk → RW → 3W
 

(5+5)         Z' → T'T' → tZtZ
 

(6+6)         Y → HH → 4t

??App JetJet… …B C

??App JetJet… …B C

MA = 2-5 TeV
MB, MC = 25-400 GeV

bump in the QCD background
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Two datasets used in the analysis:

● MC “mock dataset”
Unweighted sampling from QCD & minor 
backgrounds

● Full Run 2 data

Both selecting dijet (R = 0.8) events,
mjj above trigger threshold

Datasets
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Analysis Strategy

Real Data Trained Model Anomaly Metric Cut

SIG
like

BG
like

Bump Hunt New Physics

Anti-kT  jets (R=0.8)
basic selection criteria

Keep ~1% most 
anomalous events

Resonance?
Anomaly Detection Methods

Unsupervised
VAE-QR (AD1)

Semi-supervised
QUAK (AD2)

Weekly-supervised
CWoLA (AD3)

TnT (AD4)
CATHODE (AD5)

Step 1

Step 2
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XX yy X’X’

Unsupervised method
VAE -QR
(Variational Autoencoder-Quantile regression)

● Encodes up to 100 Particle Flow constituents per jet

● Trained with jets from a QCD-dominated sideband 
(Δη > 1.4)

● Background sculpting controlled with quantile 
regression

Final Anomaly score:

lowest reconstruction loss of 
the two jets

high – Anomalous!!
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Semi-supervised method
QUAK
(Quasi Anomolous Knowledge)

● Hybrid approach, encoding a prior
on signal-like features

● Train two normalizing flows:

          -on a mixture of signal MCs

          -on background MC

● The losses define a 2D QUAK space

● The signal is somewhere in that space...
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Weakly supervised methods

● Assume signal is a narrow resonance and choose a mass window 
that is defined as SR (signal region)

● Define the SB (side bands)
● Train a classifier between data and a background-like sample              

                

                

data vs background signal vs background
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Weakly supervised methods

● background interpolated from sidebands
● Density estimation -> Masked Autoregressive Flow (MAF)
● Train it using the conditional feature, usually m and auxiliary features X only from 

the SBs

CATHODE (Classifying Anomalies THrough Outer 
Density Estimation)

CWoLA (Classification WithOut LAbels)
● Background is taken from the side bands

TnT (Tag N’ Train)
● Autoencoder preselection, targets events with two 

anomalous jets
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Input Variables
● CWoLa Hunting / TNT (one model per jet):

● CATHODE (one model per event):

● CATHODE-b (one model per event):

● VAE-QR (one model for both jets):

           Jet images
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Performance on simulation
● Tested for process

 X(3000) → YY’ → qq qq

● Signal detection already 
possible for low cross sections
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Getting Results

● Select the ~1% most anomalous events

MC mock dataset
13



Getting Results

● Select the ~1% most anomalous events

● Choose a working point, select events

● Fit dijet mass spectrum with analytic function

● Perform Bump hunt 

● Derive p-value

MC mock dataset
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Getting Results

● Select the ~1% most anomalous events

● Choose a working point, select events

● Fit dijet mass spectrum with analytic function

● Perform Bump hunt 

● Derive p-value

● Apply method to complete mass range, redefine 
SRs

●  Scan over the dijet invariant mass
Full Run 2 data 15



Limits
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For weakly supervised methods:

● The signal efficiency depends on the 
number of signal events

● Special limit-setting procedure

● Explained in Appendix B

Full Run 2 data 16

Appendix B, EXO-22-026🡥

https://arxiv.org/abs/2412.03747


Results
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● No anomaly detected 
● Improved limits compared to inclusive 

search



This code base provides easy-to use modules for building and testing CATHODE
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(github:skCATHODE🡥)
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Check it out

Any questions?
Reach out to us!

https://github.com/uhh-pd-ml/sk_cathode


Lessons Learned!
● Five different methods → complimentary

● Limit setting is unconventional (for weak supervision)

● … 
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Machine Learning Paper



Performance for all signals
● Best limit improvement 

for all 22 signals (3 TeV)

● All methods represented

 ➔ Complementarity
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● Small correlations between anomaly scores   Complementarity➔
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Cathode Vs. Cathode-b
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● Testing more signals with 
CATHODE(-b)

● Mixing 3 and 5 TeV mass points

● Using the supervised classifier 
score as a proxy for input strength 

● CATHODE (one model per event):

● CATHODE-b (one model per event):
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Cathode Vs. Cathode-b
● Testing more signals with 

CATHODE(-b)

● Mixing 3 and 5 TeV mass 
points

● CATHODE-b better on b-
tagged signals, worse on 
others

signals with b only



Summary
● We presented the first CMS results on anomaly detection

● There are 5 different methods that improves performance as compared to the inclusive 
search

● The five methods are complimentary, there’s no single method performing the best. But 
different methods do well with different signal. 

● We are investigating about these complementarity and differences in the methods, 
currently observing different input features

● We will do more studies, we are happy to hear suggestions !
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