

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Anomaly Detection with CMS

Gregor Kasieczka, Louis Moureaux, Manuel Sommerhalder **Chitrakshee Yede**, Tore von Schwartz

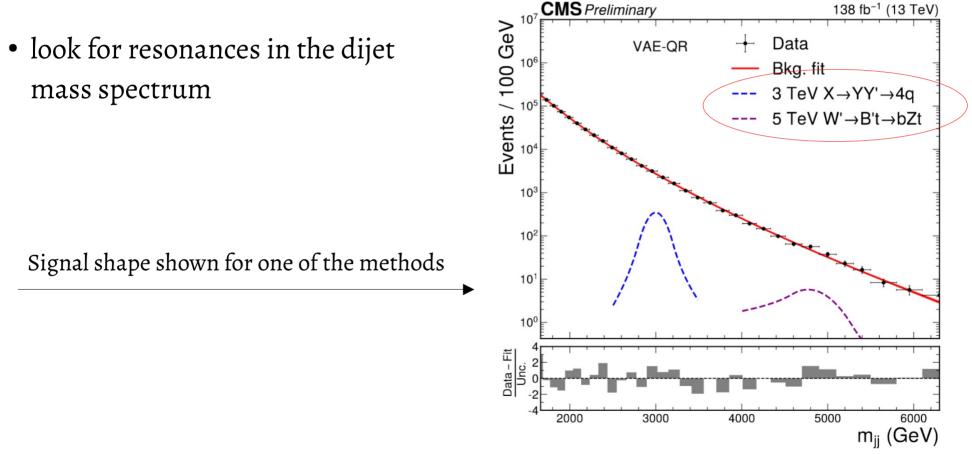
(chitrakshee.yede@cern.ch)

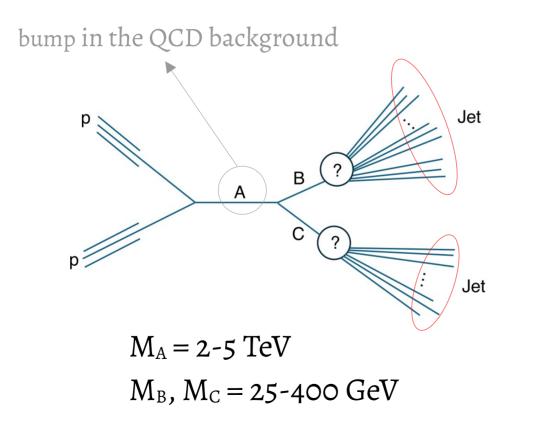
Glühwein Workshop, KIT 16th Dec. 2024

I will be talking about

Model-agnostic search for dijet resonances with anomalous jet substructure in proton-proton collisions at $\sqrt{s} = 13$ TeV

The CMS Collaboration*

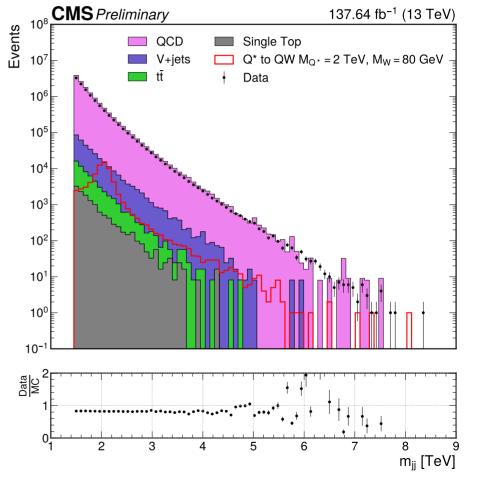

(CMS-EXO-22-0267)


3. Lessons Learned!

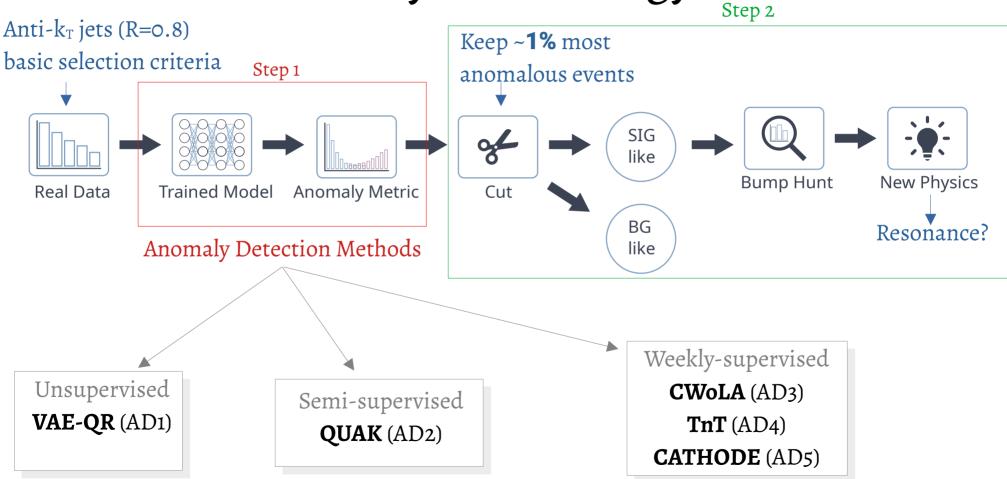
1.

Analysis Goal

Signal Models


Prongs	A → BC
(1+2)	$Q^{*} \rightarrow qW'$
(2+2)	$X \rightarrow Y Y' \rightarrow 4 q$
(3+3)	$W' \rightarrow B't \rightarrow Bzt$
(2+4)	$W_{kk} \rightarrow RW \rightarrow 3W$
(5+5)	$Z' \rightarrow T'T' \rightarrow tZtZ$
(6+6)	$Y \rightarrow HH \rightarrow 4t$

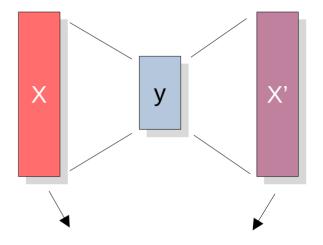
Datasets


Two datasets used in the analysis:

- MC "mock dataset" Unweighted sampling from QCD & minor backgrounds
- Full Run 2 data

Both selecting dijet (R = 0.8) events, m_{ij} above trigger threshold

Analysis Strategy



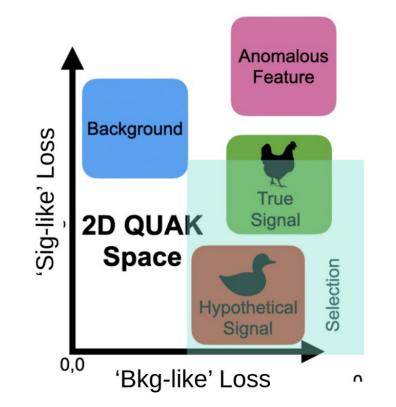
Unsupervised method

VAE -QR

(Variational Autoencoder-Quantile regression)

- Encodes up to 100 Particle Flow constituents per jet
- Trained with jets from a QCD-dominated sideband $(\Delta \eta > 1.4)$
- Background sculpting controlled with quantile regression

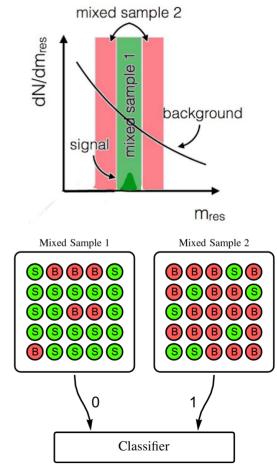
Final Anomaly score:


lowest reconstruction loss of the two jets high – Anomalous!!

Semi-supervised method

QUAK

(Quasi Anomolous Knowledge)


- Hybrid approach, encoding a prior on signal-like features
- Train two normalizing flows:
 - -on a mixture of signal MCs
 - -on background MC
- The losses define a 2D QUAK space
- The signal is somewhere in that space...

Hypothetical QUAK Space


Weakly supervised methods

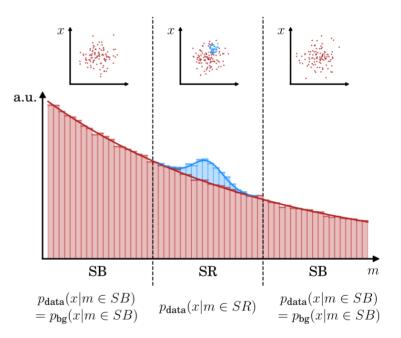
- Assume signal is a narrow resonance and choose a mass window that is defined as SR (signal region)
- Define the SB (side bands)
- Train a classifier between data and a **background-like sample**

data vs background

signal vs background

Weakly supervised methods

CWoLA (Classification WithOut LAbels)


• Background is taken from the side bands

TnT (Tag N' Train)

• Autoencoder preselection, targets events with **two** anomalous jets

CATHODE (Classifying Anomalies THrough Outer Density Estimation)

- background interpolated from sidebands
- Density estimation -> Masked Autoregressive Flow (MAF)
- Train it using the conditional feature, usually *m* and auxiliary features *X* only from the SBs

Input Variables

• CWoLa Hunting / TNT (one model per jet):

 $m_{\rm sd}$, τ_{21} , τ_{32} , τ_{43} , $n_{\rm PF}$, LSF₃, DeepB

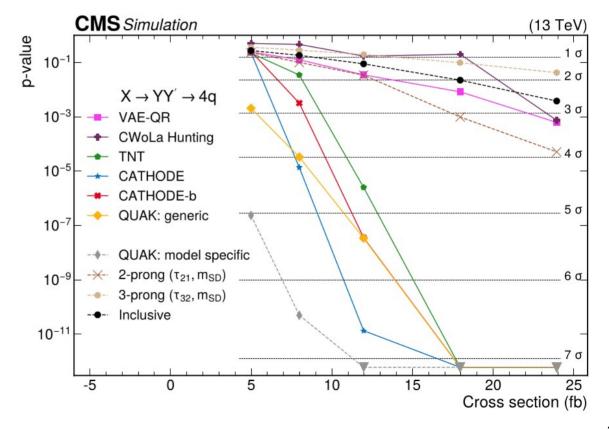
• CATHODE (one model per event):

 $m_{j1}, \quad \Delta m_{j1j2} = m_{j1} - m_{j2}, \quad \tau_{41,j1}, \quad \tau_{41,j2},$

• CATHODE-b (one model per event):

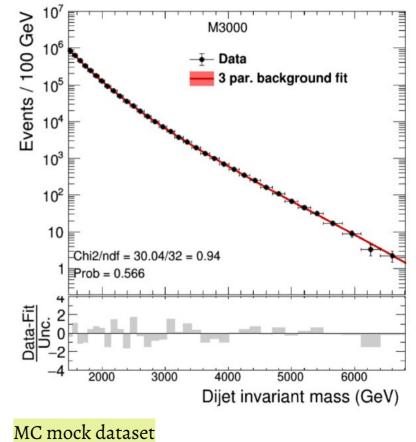
 m_{j1} , $\Delta m_{j1j2} = m_{j1} - m_{j2}$, $\tau_{41,j1}$, $\tau_{41,j2}$, DeepB_{j1}, DeepB_{j2}.

• VAE-QR (one model for both jets):

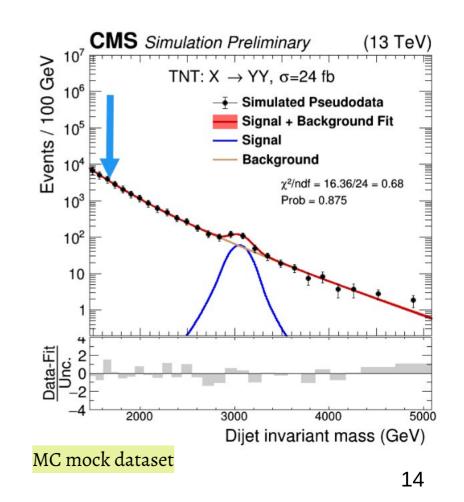

Jet images

Performance on simulation

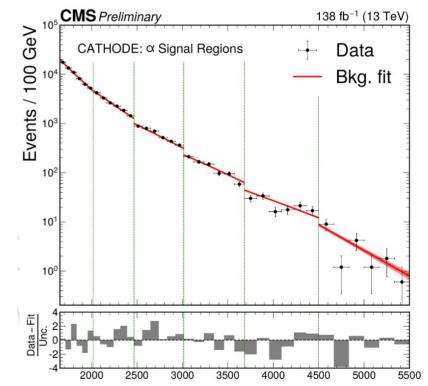
• Tested for process


 $X(3000) \rightarrow YY' \rightarrow qq \; qq$

• Signal detection already possible for low cross sections


Getting Results

• Select the ~1% most anomalous events

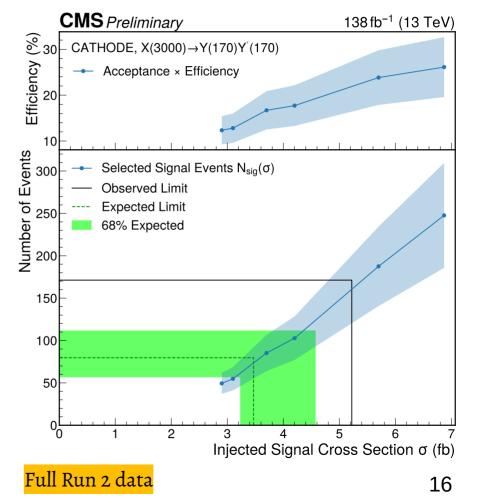

Getting Results

- Select the ~1% most anomalous events
- Choose a working point, select events
- Fit dijet mass spectrum with analytic function
- Perform Bump hunt
- Derive p-value

Getting Results

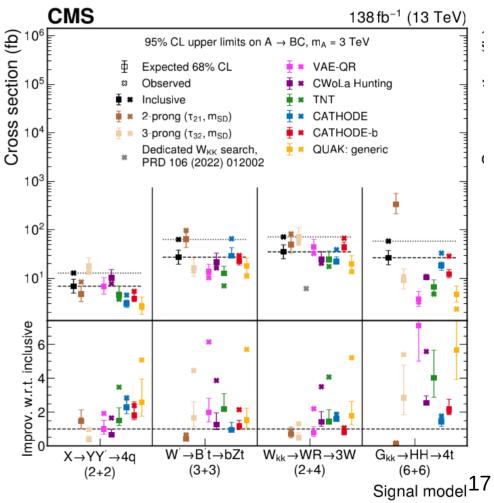
- Select the ~1% most anomalous events
- Choose a working point, select events
- Fit dijet mass spectrum with analytic function
- Perform Bump hunt
- Derive p-value
- Apply method to complete mass range, redefine SRs
- Scan over the dijet invariant mass

Full Run 2 data


Limits

For weakly supervised methods:

• The signal efficiency depends on the number of signal events


 $N_{\rm sig}(\sigma) = \sigma \times \mathcal{L} \times A \times \epsilon(\sigma)$

- Special limit-setting procedure
- Explained in Appendix B Appendix B, EXO-22-0267

Results

- No anomaly detected
- Improved limits compared to inclusive search

SKCATHODE

Check it out (github:skCATHODE[¬])

This code base provides easy-to use modules for building and testing CATHODE

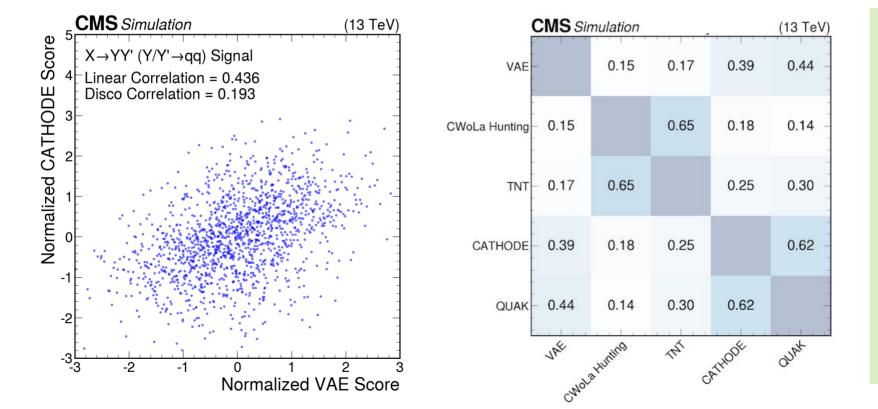
	h-pd-ml / sk_cathode (Public)				☆ Star 13		
<> Co	nde 💿 Issues 第 Pull requests 🕞 Actions	Projects 🔃 Security 🗠 Insights					
	양 main ☞ 양 3 Branches ⓒ 0 Tags	Q Go to file	<> Code •	About			
	msommerh Merge pull request #16 from uhh-	🕚 128 Commits	An instructive notebook implementation of anomaly detection algorithms, such as CATHODE, hiding the technical implementation details				
	.github/workflows	Trigger tests also on changes to the tests subdirectory 2 month					
(emos	minor style adjustments to autoencoder and gauss weak	4 months ago	behind a scikit-learn-like API.			
	sk_cathode	Fixing existing style issues triggered by flake8	2 months ago	لي Readme ماه MIT license			
	tests	adding autoencoders to the unit tests	4 months ago	→ Activity			
	🗅 .gitignore	updating .gitignore	5 months ago	E Custom properties			
	🕒 Dockerfile	Sort apt installs alphabetically	2 months ago	☆ 13 stars ③ 3 watching			
3	LICENSE.txt	adding license	11 months ago			uestions?	
	🗅 README.md	Change pip/conda and docker ordering in installation se	2 months ago	Report repository	Dooch	Any questions? Reach out to us!	
	🗅 requirements.txt	Removing unused nflows dependency from default torch	5 months ago	Releases	Reaction out to us!		
	requirements_full.txt	adding extended requirements file for torchdyn and pyro	10 months ago	No releases published		18	

Lessons Learned!

- Five different methods → complimentary
- Limit setting is unconventional (for weak supervision)

Machine Learning Paper

...


Performance for all signals

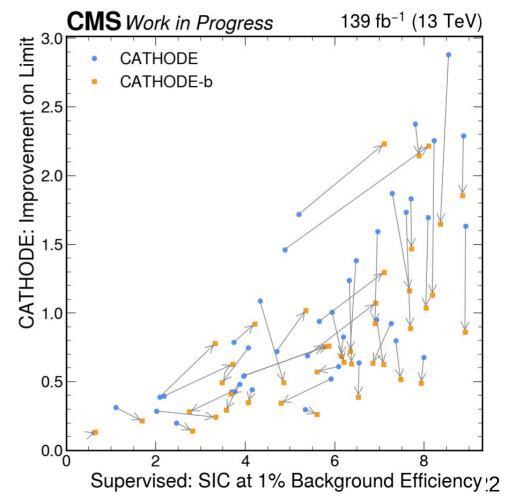
- Best limit improvement for all 22 signals (3 TeV)
- All methods represented
 - → Complementarity

Model $A \rightarrow BC$ (m _A = 3 TeV)	Daughter Masses (GeV)	Method	Exp. (Obs.) Limit (fb)	Improvement wrt Inclusive
Q* ightarrow qW'	25	CWoLa Hunting	61.1 (30.1)	0.3
	80	CATHODE	50.0 (95.2)	0.4
	170	VAE-QR	52.5 (37.5)	0.4
	400	CWoLa Hunting	45.8 (24.3)	0.5
X ightarrow YY' ightarrow 4q	25/25	CATHODE	8.0 (9.9)	0.9
	25/80	CATHODE	7.6 (13.2)	0.9
	25/170	CATHODE	10.3 (18.4)	0.7
	25/400	VAE-QR	13.6 (12.5)	0.6
	80/80	CATHODE	4.2 (8.0)	1.6
	80/170	CATHODE	5.7 (11.4)	1.2
	80/400	CATHODE	6.0 (7.3)	1.2
	170/170	CATHODE	3.7 (6.8)	1.9
	170/400	VAE-QR	4.4 (4.0)	1.7
	400/400	VAE-QR	2.1 (1.9)	4.2
W' ightarrow B't ightarrow bZt	25	TNT	25.2 (17.4)	1.5
	80	TNT	22.3 (14.6)	1.5
	170	TNT	12.2 (7.3)	2.1
	400	VAE-QR	15.2 (11.4)	1.8
	$\langle \langle \rangle \rangle$		$\langle \rangle$	
$W_{KK} \rightarrow RW \rightarrow 3W$	170	TNT	25.1 (20.1)	1.4
	400	CWoLa Hunting	23.8 (25.0)	1.5
		111		
$Z' \to T'T' \to tZtZ$	400	QUAK	28.3 (13.9)	2.7
$Y \to HH \to 4t$	400	QUAK	7.7 (3.7)	^{3.5} 20

Complementarity

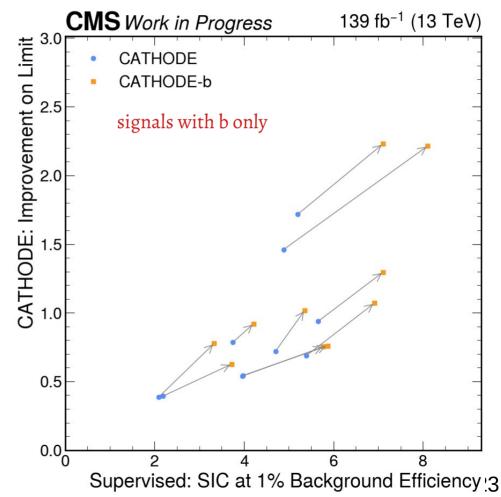
• Small correlations between anomaly scores → Complementarity

ZI

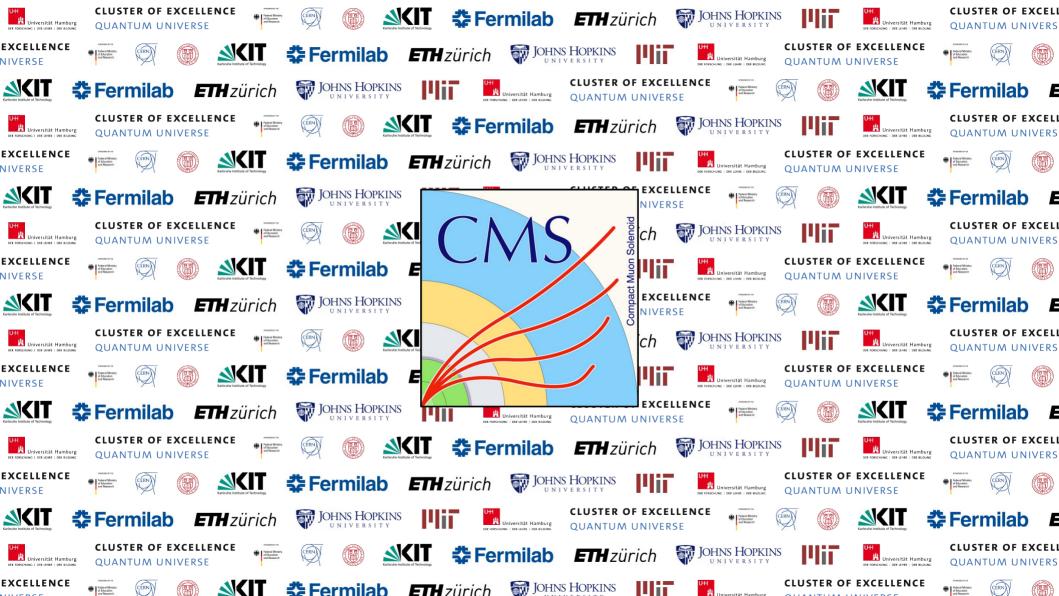

Cathode Vs. Cathode-b

- Testing more signals with CATHODE(-b)
- Mixing 3 and 5 TeV mass points
- Using the supervised classifier score as a proxy for input strength
- CATHODE (one model per event):

 $m_{j1}, \quad \Delta m_{j1j2} = m_{j1} - m_{j2}, \quad \tau_{41,j1}, \quad \tau_{41,j2},$


• CATHODE-b (one model per event):

 $m_{j1}, \quad \Delta m_{j1j2} = m_{j1} - m_{j2}, \quad \tau_{41,j1}, \quad \tau_{41,j2}, \quad \text{DeepB}_{j1}, \quad \text{DeepB}_{j2}.$


Cathode Vs. Cathode-b

- Testing more signals with CATHODE(-b)
- Mixing 3 and 5 TeV mass points
- CATHODE-b better on btagged signals, worse on others

Summary

- We presented the first CMS results on anomaly detection
- There are 5 different methods that improves performance as compared to the inclusive search
- The five methods are complimentary, there's no single method performing the best. But different methods do well with different signal.
- We are investigating about these complementarity and differences in the methods, currently observing different input features
- We will do more studies, we are happy to hear suggestions !

