Generative transformers for learning point-cloud simulations

Joschka Birk, Frank Gaede, Anna Hallin, Gregor Kasieczka, Martina Mozzanica, Henning Rose henning.rose@studium.uni-hamburg.de

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE Glühwein Workshop December 17, 2024

[1] Birk et al. "OmniJet-α: The first cross-task foundation model for particle physics" (arXiv:2403.05618) (2024)

Motivation

OmniJet- α : The first cross-task foundation model for particle physics

Joschka Birk,^{1,*} Anna Hallin,^{1,†} and Gregor Kasieczka¹

¹Institute for Experimental Physics, Universität Hamburg Luruper Chaussee 149, 22761 Hamburg, Germany

Foundation models are multi-dataset and multi-task machine learning methods that once pretrained can be fine-tuned for a large variety of downstream applications. The successful development of such general-purpose models for physics data would be a major breakthrough as they could improve the achievable physics performance while at the same time drastically reduce the required amount of training time and data. We report significant progress on this challenge on several fronts. First, a comprehensive set of evaluation methods is introduced to judge the quality of an encoding from physics data into a representation suitable for the autoregressive generation of particle jets with (the common backbone of foundation models). These measures motivate lity tokenization compared to previous works. Finally, we demonstrate

H. Rose

2

OmniJet-α cross-task

OmniJet-α cross-data

H. Rose University of Hamburg

[1] Birk et al. "OmniJet- α : The first cross-task foundation model for particle physics" (arXiv:2403.05618) (2024)

OmniJet-α cross-data

Aspen Open Jets: arxiv.2412.10504

• 180M ML-ready high p_{τ} jets derived from CMS 2016 Open Data

6

7

Data

Based on the proposed design of the International Large Detector (ILD)[2]:

- γ-energy 10-100 GeV
- x, y, z ∈ [0,29]
- voxel energy 0-13 MeV
- 100-1700 hits per shower

^[3] **20 times more hits** than particles in a jet!

[2] ILD Collaboration "International Large Detector: Interim Design Report" (arXiv:2003.01116) (2020)

[3] Buhmann et al. "Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed" (arXiv:2005.05334) (2020)

Overview

1. Tokenization / Reconstruction

2. Generation

Tokenization

Token quality

Token quality

Generative training

- Transformer architecture of OmniJet-α [1] (adapted from the original GPT-1 architecture [4])
- Works like a language model, but generates hit-tokens instead of word-tokens

[1] Birk et al. "OmniJet-α: The first cross-task foundation model for particle physics" (arXiv:2403.05618) (2024)
[4] Radford et al, "Improving language understanding by generative pre-training" (2018)

Generative prediction

Shower = {start-token, token₁, ..., token_n, end-token}

token_i = integer value \in [1,..., 65,536]

Generative prediction

Shower = {start-token, token₁, ..., token_n, end-token}

token_i = integer value \in [1,..., 65,536]

Autoregressive prediction

Results - visible cell energy

H. Rose University of Hamburg

- Comparison of 40k showers
- Only considering MIP hits for analysis
- Geant4 [3]
 - Simulated Showers
- L2LFlows [5]
 - State-of-the-art generative model
 - Post-processed and calibrated
- OmniJet-α_c
 - Post-processed not calibrated

To few high energy hits

[3] Buhmann et al. *"Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed"* (arXiv:2005.05334) (2020)

[5] Buss et al. "Convolutional L2LFlows: Generating Accurate Showers in Highly Granular Calorimeters Using Convolutional Normalizing Flows" (<u>arXiv:2405.20407</u>) (2024) 18

Results - energy sum / number of hits

Results - more histograms

Good performance on COG profile, mean energy per layer and energy per radius

Summary

- Geometry independent
- No conditioning needed
- Generates showers with good agreement on shower-level and hit-level
- Proof of concept for the versatility of OmniJet-α, applying it to a completely different subdomain

Backup

Geometry independence

Overlay of 2000 photon showers along y

Hyperparameters

VQ-VAE

Hyperparameter	Value
Learning rate	0.001
Optimizer	Ranger
Batch size	152
Batches per epoch	1000
Number of epochs	588
Hidden dimension	128
Codebook size	65536
eta	0.8
α	10
Replace frequency	100

Generative model

Hyperparameter	Value
Learning rate	0.001
Optimizer	Ranger
Batch size	72
Batches per epoch	6000
Number of epochs	106
Embedding dimension	256
Number of heads	8
Number of GPT blocks	3

Token quality

Tokenization

VQ-VAE losses

Reconstruction loss: $\mathcal{L}_{\text{reconstruction}} = \frac{1}{n} \sum_{i=1}^{n} (x_i - x'_i)^2 \text{ MSE-loss}$ Commitment loss: $\mathcal{L}_{\text{commitment}} = \beta \cdot \|\text{sg}[z_e] - z_q\|^2 + (1 - \beta) \cdot \|z_e - \text{sg}[z_q]\|^2$ Complete loss: $\mathcal{L} = \mathcal{L}_{\text{reconstruction}} + \alpha \cdot \mathcal{L}_{\text{commitment}}$

sg represents stop gradient operator meaning no gradient

straight-through estimator (STE) is used to pass the gradients straight through the quantization operation - to ensure the **STE** is accurate, the codebook and the encoder representations are pulled together using the **sg**

Data - What is a point cloud?

Simulated shower in the electromagnetic calorimeter of the envisioned International Large Detector (ILD)

(2005.05334) "Getting High" generates geometry-independent calorimeter showers as point clouds.