

Silicon Sensor Studies within the Scope of the Phase-2 Upgrade of the CMS Outer Tracker

KSETA Workshop 2019 – Marius Metzler

Institut für Experimentelle Teilchenphysik (ETP)

HL-LHC Upgrade in a Nutshell

Phase-2 Outer Tracker Modules

New module concept with 2 sensors on top of each other

2 module types:

Phase-2 Outer Tracker Modules

- New module concept with 2 sensors on top of each other
- 2 module types:
 - 2S (2 strip sensors)
 - PS (macro pixel + strip sensor)
- Sensor granularity decreases from center outwards

The Phase-2 Outer Tracker Sensors

2S:

- A = 10 x 10 cm²
- Strips: 2 x 1016 = 2032
- Pitch: 90 µm

PS-s:

- A = 5 x 10 cm²
- Strips: 2 x 960 = 1920
- Pitch: 100 µm

PS-p:

- A = 5 x 10 cm²
- Macro pixel: 32 x 960 = 30208
- Pixel size: 100 x 1500 μm²

1) Operation under reverse bias at full depletion

- $N_{\text{free charge carriers}} \approx O(10^8) >> S_{\text{particle}} \approx O(10^5)$
 - \rightarrow full depletion is mandatory
- Leakage current I_{leak} of sensor is a significant quantity

■ I_{leak} ~ T

 \rightarrow operation temperature in tracker T < 0

2) Particle detection

- Traversing charged particles generate eh-pairs → eh-pairs are separated by E-filed → charge is collected by strips
- S_{particle} is dependent on sensor thickness (~ 75 eh/µm)

3) Signal

- Signal = most probable value (MPV) of signal distribution
- Sensor's MPV has to be well-above the noise of read-out electronics to make its operation efficient (rule of thumb: MPV/3 > $4\sigma_{read-out}$)

4) Radiation damage

- Introduces defects in silicon lattice \rightarrow additional states within the band gap \rightarrow reduction of signal and increase of leakage current
- Expected maximum fluences after 10 years:

5) Annealing

- Irradiated sensors anneal at room temperature (RT) → reduces leakage current and affects signal
- Annealing period during year-end technical stop possible

Material Studies at ETP – Recent Results

Seed Signal vs. Annealing (Φ = 3e14 n_{eq} cm⁻², V_{bias} = 600 V, T = -20°C)

Comparison of 200, 240 and
300 µm material for

V_{bias} = 600 V

- Signal of 200 µm material too low
- 240/300 µm provide similar signal and annealing characteristic at 600 V

Material Studies at ETP – Irradiation Studies

- ETP is leading institute in terms of irradiation studies due to powerful self-built setups and infrastructure
- Material decision will be made almost exclusively based on our studies
- More than 10 years of
 - Irradiation studies
 - Sensor qualification
 - Vendor qualification
- Final irradiation campaign on-going (material decision this summer)

Back Up

