

Characterization of HVCMOS Sensors

Felix Ehrler

ASIC and Detector Laboratory (ADL), Institute for Data Processing and Electronics (IPE)

www.kit.edu

- What is HVCMOS?
- Sensor Characterization
- Some Example Measurement Results

What is HVCMOS?

27.02.2019 Felix Ehrler

HVCMOS for High Energy Physics

- HV CMOS = <u>High</u> voltage <u>c</u>omplementary <u>metal</u> oxide <u>s</u>emiconductor
- Large depletion depth (= signal strength)
 - High depletion voltage (up to 250 V)
 - High resistive substrate (up to 1kΩcm or more)
- Electronics placed inside the pixels:
 - Monolithic active pixel sensor (MAPS)

HVCMOS for High Energy Physics

- Fast and efficient charge collection by drift
- Sensor and electronics on the same die
- Low material budget (≤ 50 µm)
- Simple assembly (no bump bonding)
- Low cost
- Radiation tolerant technology, further increased by special design

High Energy Physics Experiment

Requirements of HEP

Tracker: Particle identification or decay reconstruction

Requirements of HEP

- Tracker: Particle identification or decay reconstruction
- Particle trajectory
- Energy measurement
- Rate measurement

Requirements of HEP

- Tracker: Particle identification or decay reconstruction
- Particle trajectory
- Energy measurement
- Rate measurement
- Spacial resolution (pixel size between 30x30 μm² and 50x250 μm²)
- Time resolution (10-50 ns)
- High efficiency (>99%)
- Energy Resolution
- Signal-to-noise-ratio
- Harsh measurement environment: radiation hardness

Variants of HVCMOS

- Small fill-factor
 - Small collection electrode without electronics (not yet radiation hard)
- Large fill-factor
 - Larger collection electrode with pixel electronics inside

Variants of HVCMOS

- Small fill-factor
 - Small collection diode without electronics (not yet radiation hard)
- Large fill-factor
 - Larger collection diode with pixel electronics inside
- HRCMOS
 - Focus on high resistive substrate (not radiation hard)
- HVCMOS
 - Focus on high depletion voltage

Variants of HVCMOS

- Small fill-factor
 - Small collection diode without electronics (not yet radiation hard)
- Large fill-factor
 - Larger collection diode with pixel electronics inside
- HRCMOS
 - Focus on high resistive substrate (not radiation hard)
- HVCMOS
 - Focus on high depletion voltage
- HV-Monolithic Active Pixel Sensor
- Capacitvly Coupled Pixel Detector
 - Intermediate concept between Hybrid Sensor and Monolithic Active Pixel Sensor

13 27.02.2019 Felix Ehrler

Components of MAPS

- Signal path
 - Pixel diode
 - In-pixel amplifier
 - Comparator (in pixel or periphery)
 - Readout (buffer, timestamp generation, encoder, serializer)
- Configuration
 - Shift register (matrix configuration)
 - RAM (pixel configuration)
- Bias block

Derivation of several clocks from reference clock (PLL)

Components of MAPS

Readout

- Zero supressed (and triggered) readout
- One or more differential output lines for serial data transmission

Transmitted information:

- Spacial information (e.g. column number, row number)
- Timestamp
- Additional information
 - time over threshold
 - signal height
 - waveform sample points
 - 2nd timestamp
 - cluster information

Submission Timeline – Projects of KIT ADL

Submission Timeline – Projects of KIT ADL

Sensor Characterization

27.02.2019 Felix Ehrler

What is to be Characterized?

- Functionality
- Energy Resolution
- Time resolution
- Spacial resolution
- Detection efficiency
- Radiation hardness

Components of Characterization Setups

- The Device Under Test (DUT) needs:
 - Power supply
 - Bias voltages
 - Configuration
 - Data connections
 - Signal source (particles or electrical pulses)

DUT-Specific Setup

- PCB
- Software
- Firmware
- Big effort requiredCheap for few tested sensors

Measured Chips

- HVStripV1
- CCPDv1
- CCPDv2
- H35Demo

Multipurpose Adapter Board v1 (MAB)

- Interconnection beween FPGA and carrier
- Modular: daughter boards
 - Voltage board
 - Injection board
- Outsourcing of some functionality (expensive compontents)
- Reusable for new projects
- No FMC connector

- NexysVideo (Artix7)
- modular

24

27.02.2019

- 10 arbitrary voltages
- 2 testsignal generators

MAB v1 has been used in the characterization of:

- MuPix8
- ATLASpix_M2
- ATLASpix_Simple
- ATLASpix_Isosimple
- 2 LFoundry ATLAS chips (PPtB, Waveform sampling)
- MuPix9
- CCPD
- ATLASpix2

Felix Ehrler

- One large board for routing and configuration of the ...
- Image: up to eight configurable function cards. Depending on the DUT, a function card can be plugged in an arbitrary slot:
 - Voltage card (8 voltages)
 - Injection card (2 test signal generators)
 - Configuration card
 - Others possible/planned: Deserializer card, Trigger card ...
- Power supply
- Separated ground

New Properties

- PCIe connectors
- No common ground needed
- Highly modular
- 8 function card slots
 - 8 arbitrary voltages each
 - 2 test signal generators each
 - 4 configuration lines
- Small and simple DUT cards
- No wires connected to DUT

Multipurpose Adapter Board v2 with beam telescope

- Currently 5 AtlasS1 layers
- MuPix8 layers under construction

Modular Soft- and Firmware

- Simple to adapt existing Firmware modules to new ASIC
 - Universal Modules in FPGA Firmware
 - Automated register file generation
 - Versatile communication with computer
- C++ classes for rapid development
 - Communication class
 - Capsuled configuration classes: Bit manipulation? Never again!
 - MAB classes

Characterization Setup Summary

- 4 configuration lines

Some Example Measurement Results

27.02.2019 Felix Ehrler

X-ray Spectrum – Energy Resolution

- X-rays from an X-ray tube are sent to targets of different elements to generate monochromatic X-ray radiation
- X-ray energy corresponds to a certain charge generated in silicon

Used to show linearity of amplifier

Time Resolution Measurement

- Strontium-90 source is placed above sensor and scintillator
- The variation of the difference of the timestamps generated by both is the time resolution

Uniformity

- Small production differences lead to non-uniform behavior
- Solution: Adjust the local threshold of each pixel

Tuning

Conclusion

- HVCMOS is a versatile technology
- A lot of research is going on in the HVCMOS collaborations
- In some years, most trackers might be based on HVCMOS sensors
- Some effects not yet fully understood
- A lot of characterization to be done!

Many thanks to Alena, Ivan, Rudolf, and all other people at IPE and ETP

Thank you for your attention!

Backup

27.02.2019 Felix Ehrler

Oxide Charge

39 27.02.2019 Felix Ehrler

Bulk damage

(Si)

hadron

Sì

(Si)

(Si)

