Coherent neutrino scattering

Evgeny Akhmedov

Max-Planck Institute für Kernphysik, Heidelberg

Evgeny Akhmedov

6th KSETA Plenary Workshop

- Coherent elastic neutrino-nucleus scattering and its first observation
- Why is CEvNS interesting? What can we learn?
- Can one achieve coherent neutrino scattering on macroscopic scales?
- How can we improve theoretical description of CEvNS?

Many interesting talks on CEvNS: Workshop "The Magnificent CEvNS", Chicago, Now. 2-2, 2018. Slides of the talks at https://kicp-workshops.uchicago.edu/2018-CEvNS/program.php

Coherent elastic neutrino-nucleus scattering

NC – mediated neutrino-nucleus scattering:

 $\nu+A\rightarrow \nu+A$

Incoherent scattering – Probabilities of scattering on individual nucleons add:

 \Diamond *σ* α (# **of scatterers**)

Coherent scattering on nucleus as ^a whole – Amplitudes of scattering onindividual nucleons add

 $\Diamond \hspace{0.5cm} \sigma \propto (\# \hspace{0.1cm} \textsf{of} \hspace{0.1cm} \textsf{scatters})^2$

Significant increase of the cross sections (but requires small momentumtransfer, $q\,\lesssim\,R^{-1}$ $\left(\begin{array}{c} 1 \end{array} \right)$

```
(D.Z. Freedman, 1974)
```
Coherent neutrino nucleus scattering: Predictions & Implications

Coherent effects of a weak neutral current

Daniel Z. Freedman^t

National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

If there is a weak neutral current, then the elastic scattering process $\nu + A \rightarrow \nu + A$ should have a sharp coherent forward peak just as $e + A - e + A$ does. Experiments to observe this peak can give important information on the isospin structure of the neutral current. The experiments are very difficult, although the estimated cross sections (about 10⁻³⁸ cm² on carbon) are favorable. The coherent cross sections (in contrast to incoherent) are almost energy-independent. Therefore, energies as low as 100 MeV may be suitable. Quasicoherent nuclear excitation processes $v + A \rightarrow v + A^*$ provide possible tests of the conservation of the weak neutral current. Because of strong coherent effects at very low energies, the nuclear elastic scattering process may be important in inhibiting cooling by neutrino emission in stellar collapse and neutron stars.

- • Implications for neutrino transport in supernovae
	- Large cross section important for understanding how neutrinos emerge from supernovae

THE WEAK NEUTRAL CURRENT AND ITS EFFECTS IN STELLAR COLLAPSE

Daniel Z. Freedman Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11790

David N. Schramm¹ and David L. Tubbs² Enrico Fermi Institute (LASR), University of Chicago, Chicago, Illinois 60637

•

$$
\diamondsuit \quad \left[\frac{d\sigma_{\nu A}}{d\Omega}\right]_{\text{coh}} \simeq \frac{G_F^2}{16\pi^2} E_\nu^2 [Z(4\sin^2\theta_W - 1) + N]^2 (1 + \cos\theta) |F(\vec{q}^2)|^2
$$

 $F(\vec{q}^{\,2}$ $^{2})$ is nuclear formfactor:

$$
F_{N(Z)}(\vec{q}^2) = \frac{1}{N(Z)} \int d^3x \rho_{N(Z)}(\vec{x}) e^{i\vec{q}\vec{x}}, \qquad \vec{q} = \vec{k} - \vec{k}'.
$$

$$
\diamondsuit \quad \left[\frac{d\sigma_{\nu A}}{d\Omega}\right]_{\text{coh}} \simeq \frac{G_F^2}{16\pi^2} E_\nu^2 [Z(4\sin^2\theta_W - 1) + N]^2 (1 + \cos\theta)|F(\vec{q}^2)|^2
$$

 $F(\vec{q}^{\,2}$ $^{2})$ is nuclear formfactor:

$$
F_{N(Z)}(\vec{q}^2) = \frac{1}{N(Z)} \int d^3x \rho_{N(Z)}(\vec{x}) e^{i\vec{q}\vec{x}}, \qquad \vec{q} = \vec{k} - \vec{k}'.
$$

For $q \ll R^{-1} \Rightarrow F(\vec{q}^2) = 1$, $[d\sigma_{\nu A}/d\Omega]_{\text{coh}} \propto N^2$.
For $q \gg R^{-1}$: $F(\vec{q}^2) \ll 1$.

$$
\diamondsuit \quad \left[\frac{d\sigma_{\nu A}}{d\Omega}\right]_{\text{coh}} \simeq \frac{G_F^2}{16\pi^2} E_\nu^2 [Z(4\sin^2\theta_W - 1) + N]^2 (1 + \cos\theta) |F(\vec{q}^2)|^2
$$

 $F(\vec{q}^{\,2}$ $^{2})$ is nuclear formfactor:

$$
F_{N(Z)}(\vec{q}^2) = \frac{1}{N(Z)} \int d^3x \rho_{N(Z)}(\vec{x}) e^{i\vec{q}\vec{x}}, \qquad \vec{q} = \vec{k} - \vec{k}'.
$$

For $q \ll R^{-1} \Rightarrow F(\vec{q}^2) = 1$, $[d\sigma_{\nu A}/d\Omega]_{\text{coh}} \propto N^2$.
For $q \gg R^{-1}$: $F(\vec{q}^2) \ll 1$.

By Heisenberg uncertainty relation: for $q\lesssim R^{-1}$ the uncertainty of the coordinate of the sctatterer $\delta x\gtrsim R\;\;\Rightarrow\;\;$ it is in principle impossible to find out on which nucleon the neutrino has scattered. Also: neutrino wavesscattered off different nucleons of the nucleus are in phase with each other.

$$
\diamondsuit \quad \left[\frac{d\sigma_{\nu A}}{d\Omega}\right]_{\text{coh}} \simeq \frac{G_F^2}{16\pi^2} E_\nu^2 [Z(4\sin^2\theta_W - 1) + N]^2 (1 + \cos\theta) |F(\vec{q}^2)|^2
$$

 $F(\vec{q}^{\,2}$ $^{2})$ is nuclear formfactor:

$$
F_{N(Z)}(\vec{q}^2) = \frac{1}{N(Z)} \int d^3x \rho_{N(Z)}(\vec{x}) e^{i\vec{q}\vec{x}}, \qquad \vec{q} = \vec{k} - \vec{k}'.
$$

For $q \ll R^{-1} \Rightarrow F(\vec{q}^2) = 1$, $[d\sigma_{\nu A}/d\Omega]_{\text{coh}} \propto N^2$.
For $q \gg R^{-1}$: $F(\vec{q}^2) \ll 1$.

By Heisenberg uncertainty relation: for $q\lesssim R^{-1}$ the uncertainty of the coordinate of the sctatterer $\delta x\gtrsim R\;\;\Rightarrow\;\;$ it is in principle impossible to find out on which nucleon the neutrino has scattered. Also: neutrino wavesscattered off different nucleons of the nucleus are in phase with each other.

The necessary conditions for coherent scattering!

Nuclear recoil energy:

- **O** Observable of CEvNS process: recoil energy of struck nucleus
- No threshold (like for inverse beta-decay, IBD) \bullet
- Scaling of nuclear recoil energy: \bullet

 $E_{\text{rec}}^{\text{max}} = \frac{2 \cdot E_{\nu}^2}{m_n \cdot A + 2 \cdot E_{\nu}} \approx \frac{2 \cdot E_{\nu}^2}{m_n \cdot A}$

with: - m_n : nucleon mass; \approx 939 MeV/c² - A : atomic number; $A = N + Z$

$$
\langle E_{\text{rec}} \rangle = \frac{2}{3} \cdot \frac{E_{\nu}^2}{m_n \cdot A}
$$

A.Drukier, L.Stodolsky, Phys.Rev.D ³⁰ (1984) ¹¹

◀ ロ ▶ ◀ 何 ▶ ◀ 言 ▶ ◀

 \rightarrow push-pull situation: $\sigma_{\nu A}^{tot} \propto N^2$ vs. $E_{rec} \propto \frac{1}{(N+Z)}$ \rightarrow low recoil energy responsible for CEvNS not been detected so far

$$
R \simeq 1.2 \text{ fm } A^{1/3}; \quad A \sim 130 \quad \Rightarrow \quad R^{-1} \sim 30 \text{ MeV}.
$$

Recoil energy of the nucleus:

$$
E_{rec} \simeq \frac{\vec{q}^2}{2M_A}, \qquad E_{rec}^{max} = \frac{2E_\nu^2}{M_A + 2E_\nu} \simeq \frac{2E_\nu^2}{M_A}.
$$

For $q \sim 30 \text{ MeV}: E_{rec} \sim 5 \text{ keV}.$

Need to detect very low recoil energies $\;\Rightarrow$ requires

- Very low detection thresholds \bullet
- **•** Low backgrounds
- Intense neutrino fluxes \bullet

First Observation of CEvNS

First light detectors deployed to measure neutronsquared dependence. (Na, Ge in 2019)

High precision measurements enable the full potential of CEvNS scientific impact.

Jason Newby, Magnificent CEvNS Workshop 2018

COHERENT experiment

Neutrino energies: $E_\nu \sim 16$ – $- \, 53 \; \mathrm{MeV}.$ Nuclear recoil energy: keV - scale.

of events expected (SM): 173 \pm 48 $\,$

of events detected: 134 \pm 22 $\,$

"We report ^a 6.7 sigma significance for an excess of events, that agrees withthe standard model prediction to within 1 sigma" $\sim 2\times 10^{23}$ POT; $\sigma \sim 10^{-38}$ cm² .

D. Akimov et al., Science 10.1126/science.aao0990 (2017).

Systematic Uncertainties of the CEvNS observation

All uncertainties except neutrino flux are detector specific and could be much less for other technologies

To unlock high precision CEvNS program, we need to calibrate SNS neutrino flux

XOAK RIDGE Jason Newby, Magnificent CEvNS Workshop 2018

SNS produces pions via π decay at rest $\,$

- Largest uncertainty is pion production from p+Hg
- 10% discrepancy between Bertini and LAHET calculations

A hand-held neutrino detector

- • 14.6 kg low-background CsI[Na] detector deployed to a basement location of the SNS in the summer of 2015
- •~ 2x10²³ POT delivered and recorded since CsI began taking data

Why is CEvNS interesting?

- Large cross sections small detectors
- Very clean SM predictions for cross sections sensitivity to NSI
- Sensitivity to μ_ν $_{\nu}$ and $\langle r_{\nu}^2$ $_\nu^2\rangle$
- Possibility to measure \sin^2 $^{\prime}$ θ_W $_W$ at low energies
- Masurements of neutron formfactors (nuclear structure)
- Nuclear reactor monitoring (non-proliferation)
- Precision flavor-independent neutrino flux measurements for oscillation**experiments**
- Sterile neutrino searches
- Energy transport in SNe
- SN neutrino detection
- Input for DM direct detection (neutrino floor)
- Detection of solar neutrinos

Many experiments planned or under way – CONUS, TEXONO, Ricochet, Connie, ν -cleus, RED100, MINER, ν GEN, ...

Many theoretical studies

A very active field!

NSIparameterization

 P. Coloma. P.B. Denton, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz,"Curtailing the Dark Side in Non-Standard Neutrino Interactions", arXiv:1701.04828

$$
\mathcal{L}_{\text{NSI}} = -2\sqrt{2}G_F \sum_{f,P,\alpha,\beta} \epsilon_{\alpha\beta}^{f,P} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta})(\bar{f}\gamma_{\mu}Pf)
$$

Assuming heavy NSI mediators

Evgeny Akhmedov

6th KSETA Plenary Workshop

Magnificent CEvNS 2018/11/02 Gleb Sinev, Duke Constraining NSI with Multiple Targets 4
6th KSETA Plenary Workshop Durbach February 25 – 27, 2019 – p. 15 Durbach February $25 - 27$, 2019

CEvNS cross section and NSI

 J. Barranco, O.G. Miranda, T.I. Rashba,"Probing new physics with coherent neutrino scattering off nuclei", arXiv:hep-ph/0508299

$$
\frac{d\sigma}{dT} = \frac{G_F^2 M}{2\pi} F^2(Q) \left[(G_V + G_A)^2 + (G_V - G_A)^2 \left(1 - \frac{T}{E_\nu} \right)^2 - (G_V^2 - G_A^2) \frac{MT}{E_\nu^2} \right]
$$

$$
G_V = (g_V^P + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV})Z + (g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV})N \qquad \text{NSI terms}
$$

≈ 0

D. Akimov, J.B. Albert, P. An, et al.,"Observation of Coherent Elastic Neutrino-Nucleus Scattering", arXiv:1708.01294

COHERENT NSI constraint

- \bullet • August 2017 result
- \bullet 14 h KO U.SIII' 14.6 kg CsI[Na]
- \bullet \sim z vears rumur • ~2 years running -308.1 live-days
- \bullet • Events
	- 11 -134 ± 22 observed
	- 173 T 48 N PUCHO $-$ 173 \pm 48 predicted

Evgeny Akhmedov

6th KSETA Plenary Workshop

Magnificent CEvNS 2018/11/02 Gleb Sinev, Duke Constraining NSI with Multiple Targets 24
6th KSETA Plenary Workshop Durbach February 25 – 27, 2019 – p. 17 Durbach February $25 - 27$, 2019

Whystraight lines for SM rate?

 J. Barranco, O.G. Miranda, T.I. Rashba,"Probing new physics with coherent neutrino scattering off nuclei", arXiv:hep-ph/0508299

$$
\frac{d\sigma}{dT} = \frac{G_F^2 M}{2\pi} F^2(Q) \left[(G_V + G_A)^2 + (G_V - G_A)^2 \left(1 - \frac{T}{E_\nu} \right)^2 - (G_V^2 - G_A^2) \frac{MT}{E_\nu^2} \right]
$$

$$
G_V = (g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV})Z + (g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV})N \qquad G_A \approx 0
$$

SM rate:

$$
G_V^{SM} = g_V^p Z + g_V^n N
$$

$$
\frac{d\sigma^{SM}}{dT} = \frac{d\sigma}{dT} \left(G_V^{SM} \right) \qquad \longrightarrow \qquad G_V^{SM}^2 = G_V^{2}
$$

 $(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV})Z + (g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV})N = \pm (g_V^p Z + g_V^n N)$

Generating two straight lines in NSI-coupling space with SM rate

Evgeny Akhmedov

6th KSETA Plenary Workshop

Magnificent CEvNS 2018/11/02 Gleb Sinev, Duke Constraining NSI with Multiple Targets 13

Future COHERENT NSIconstraints

after ~3 years

 negligible statistical errorsreduced systematical,

Including magnetic moment scattering

$$
\frac{d\sigma}{dT} = \frac{G_F^2}{8\pi} M \left[2 - \frac{2T}{T_{max}} + \left(\frac{T}{E}\right)^2 \right] Q_W^2 [F_Z(Q^2)]^2 + \frac{\pi \alpha^2 \mu_{\text{eff}}^2 Z^2}{m_e^2} \left[\frac{1}{T} - \frac{1}{E} \right] \left[F_Y(Q^2) \right]^2
$$

$$
\mu_{\text{eff}}^2 = \sum_i \left| \sum_j U_{(e \text{ or } \mu)j} e^{-iE_j L} \mu_{ji} \right|^2
$$

Note that this is a different combination at CEνNS than what is measured at reactors or solar neutrino experiments!

Weinberg Angle

$$
\left(\frac{d\sigma}{dE}\right)_{\nu_{\alpha}A} = \frac{G_F^2 M}{\pi} F^2(2ME) \left[1 - \frac{ME}{2k^2}\right] \times
$$

$$
\{ [Z(g_V^p + 2\varepsilon_{\alpha\alpha}^{uV} + \varepsilon_{\alpha\alpha}^{dV}) + N(g_V^n + \varepsilon_{\alpha\alpha}^{uV} + 2\varepsilon_{\alpha\alpha}^{dV})]^2
$$

With $g_V^p = \left(\frac{1}{2} - 2\sin^2\theta_W\right)$ and $g_V^n = -\frac{1}{2}$

Eirst determination of the Weinberg angle at $q = 1$ MeV/c after 2-3 weeks of measurement with 10g!

Nuclear physics: Neutron rms

Phys. Rev. Lett. 120 071501, arXiv:1710.02730

Magnificent CEvNS, Raimund Strauss Evgeny Akhmedov 6th KSETA Plenary Workshop Durbach February ²⁵ – 27, ²⁰¹⁹ – p. ²²

The Helm form factor can be estimated from effective expressions like

$$
F_Z(\mathbf{q}^2) = \frac{3j_1(|\mathbf{q}|R_0)}{|\mathbf{q}|R_0} \exp \left[-\frac{1}{2}(|\mathbf{q}|s)^2\right] \,,
$$

J. Engel, Phys.Lett. ^B ²⁶⁴ (1991) ¹¹⁴

- $j_1(\mathsf{x})$ is the known first-order Spherical-Bessel function and R^2 $b_0^2=R^2$ $-5s$ 2,
- R radius of the nucleus
- \bm{s} surface thickness of the nucleus (of the order of 0.5 fm).

The radius parameter is usually ^given from the semi-empirical formula $R = 1.2 A^{1/3}$ fm.

Comparison of the nuclear methods

Evgeny Akhmedov **Example 2018** 6th KSETA Plenary Workshop

Application of NU-CLEUS Technology

Mobile cryogenic detector

Use neutrinos to monitor nuclear reactors

Surveillance of power plants world-wide

Nuclear non-proliferation

e.g. Phys. Rev. Lett. 113, 042503 (2014)

Nuclear Non-Proliferation

http://www.lefigaro.fr/assets/pdf/AIEA-neutrino.pdf

Fuel content modifies antineutrino spectrum

Magnificent CEvNS, Raimund Strauss Evgeny Akhmedov 6th KSETA Plenary Workshop

Sensitivity Study on Sterile Neutrinos

3+1 neutrino model:

Oscillation maximum at reactor: *& M \ & 4 / ∆m₁₄² [eV²]*

 \rightarrow Extend searches to lower Δm_{14}^2

The so-called "**neutrino floor**" for DM experiments

19 $- p.28$

Think of a SN burst as "**the** ν **floor coming up to meet you**"

Coherence on larger scales?

Can one have coherence on larger scales?

- $\langle \rangle$ Coherent neutrino scattering on atoms:
	- Advantages larger number of particles (larger $\sigma)$
	- CC scattering on electrons contributes sensitivity to neutrino \bullet oscillations!
	- Disadvantage: smaller q required $\;\Rightarrow\;$ much smaller recoil energies.

For $A \sim 100$:

$$
|\vec{q}| \lesssim (a \text{ few } a_B)^{-1} \sim 1 \text{ keV} \quad \Rightarrow
$$

$$
E_{rec} \simeq \frac{\vec{q}^2}{2m_A} \sim 10^{-5} \text{ eV}
$$

 \sim 6 – 8 orders of magnitude below currently achieved sensitivity.

 \Diamond Can one have (at least in principle) macroscopic coherence?

 \diamondsuit Forget first about problems with detection. What could one gain due to coherence?

 $\langle \rangle$ Forget first about problems with detection. What could one gain due to coherence?

Simple estimate: consider a target of linear size \sim 1 cm and mass \sim 1 g. For coherent scattering one needs $|\vec{q}\,|\lesssim q_0\sim (1{\rm~cm})^{-1}\sim 10^{-5}{\rm~eV}$. Gain: large number of particles in the coherent volume $N \propto 1/q_0^3.$

 $\langle \rangle$ Forget first about problems with detection. What could one gain due to coherence?

Simple estimate: consider a target of linear size \sim 1 cm and mass \sim 1 g. For coherent scattering one needs $|\vec{q}\,|\lesssim q_0\sim (1{\rm~cm})^{-1}\sim 10^{-5}{\rm~eV}$. Gain: large number of particles in the coherent volume $N \propto 1/q_0^3.$

For $E_\nu \gg q_0 \sim 10^{-5} \; \text{eV}$ small $q ~~\Rightarrow~$ nearly forward ν scattering:

$$
\vec{q}^2 = 2E_\nu^2(1 - \cos\theta)
$$

 \Rightarrow by limiting $\vec{q}^{\,2} < q_0^2$ we constrain the solid angle;

$$
\sigma_0 \simeq \frac{G_F^2}{\pi} E_\nu^2 ~~\longrightarrow ~~\frac{G_F^2}{2\pi^2} q_0^2.
$$

 $\langle \rangle$ Forget first about problems with detection. What could one gain due to coherence?

Simple estimate: consider a target of linear size \sim 1 cm and mass \sim 1 g. For coherent scattering one needs $|\vec{q}\,|\lesssim q_0\sim (1{\rm~cm})^{-1}\sim 10^{-5}{\rm~eV}$. Gain: large number of particles in the coherent volume $N \propto 1/q_0^3.$

For $E_\nu \gg q_0 \sim 10^{-5} \; \text{eV}$ small $q ~~\Rightarrow~$ nearly forward ν scattering:

$$
\vec{q}^2 = 2E_\nu^2(1 - \cos\theta)
$$

 \Rightarrow by limiting $\vec{q}^{\,2} < q_0^2$ we constrain the solid angle;

$$
\sigma_0 \simeq \frac{G_F^2}{\pi} E_\nu^2 \quad \longrightarrow \quad \frac{G_F^2}{2\pi^2} q_0^2.
$$

Net enhancement factor \propto $\propto 1/q_0 \propto N^{1/3} \quad \Rightarrow$

$$
\sigma_{tot} \propto N^{4/3}, \text{ not } N^2.
$$

Still for $N \sim N_A \simeq 6 \times 10^{23}$ a significant enhancement!

The problem: detection.

Momentum transfers $|\vec{q}|\lesssim q_0\sim 10^{-5}\;\text{eV}$ to achieve a (1 cm) 3 - scale coherence would mean, for ^a 1 g target,

$$
E_{rec} \simeq \frac{q_0^2}{2M_{tot}} \sim 10^{-43} \text{ eV}.
$$

Leaving aside other problems, measuring such small E_{rec} would require energy resolution δE at least of the same order.
-

But: By time-energy uncertainty relation this would require the measurement time

$$
\delta t \sim (\delta E)^{-1} \sim 10^{27} \text{ sec}
$$

10 orders of maginutude larger than t_U !

⇒New ideas are necessary.

Ways around?

One problem: what is detected are typically scintillations and ionization causedby the recoiling target particles that are $~\propto E_{rec}.$

$$
E_{rec} \simeq \frac{\vec{q}^{\,2}}{2M_{tot}} \ll |\vec{q}\,|.
$$

Can one make use of the recoil momentum $|\vec{q}\,|$ rather than E_{rec} ?

An attempt $\, -\,$ Experiments of J. Weber in the 1980s: torsion balance expts.; sapfire crystal. Sources: solar neutrinos; reactor neutrinos; radioactive source.

Combined ² interesting ideas:

- Force = momentum transfer per unit time \Rightarrow force impinged by
resultings on the exactal is directly related to \vec{x} rether then to E neutrinos on the crystal is directly related to \vec{q} rather than to $E_{rec}.$
- For small enough E_{rec} Mössbauer-type scattering is possible.

Elastic neutrino scattering on crystals

The idea: if the expected recoil energy of individual target atoms $E_R\simeq \frac{\vec{q}}{2m}$ small compared to $T_{\rm Debye}\sim10\;\textrm{keV}$, the recoil is given to the crystal as a whole 2 $\frac{1}{2m_A}$ is(like in Mössbauer experiments).

Recoil-free fraction

$$
f \simeq \exp\left\{-\frac{E_R}{T_D} \left(\frac{3}{2} + \frac{\pi^2 T^2}{T_D^2}\right)\right\}
$$

is close to 1 for "would-be" recoil energies $E_R \ll T_D$ – easily satisfied even for $q\sim E_\nu$ $'_{\nu}$ as large as a few \times (10 MeV).

Individual atoms (or nuclei) do not experience any recoil and so are not tagged. Coherence may occur at macroscopic level!

Positive results claimed, in agreement with the proposed theoretical model. Force exerted on the crystal: $\sim 10^{-5}$ dyn.

Weber's approach – criticism

Criticised from several viewpoints

- Ho, 1986: Approach excluded by expts. on neutron scattering on crystals
- Bertsch & Austin, 1986: Excluded by expts. on γ -ray scattering on crystals
- Franson & Jacobs, 1992; McHugh & Keyser, 1993: more sensitive torsionbalance experiments with neutrinos – no signal observed
- Criticisms of Weber's theoretical model: \bullet
	- Casella, 1986
	- Butler, 1987
	- **Smith, 1987**
	- Lipkin, 1987 ^r
	- Trammell & Hannon, 1987
	- Aharonov, Avignone, Casher & Nussinov, 1987
- ⇒Cross section oversestimated by ∼ ²⁴ orders of magnitude

What was wrong?

Absence of recoil of the individual nuclei is necessary for macroscopic coherence, but not sufficient: It is also necessary that the neutrino wavesscattered from different nuclei be in phase with each other.

What was wrong?

Absence of recoil of the individual nuclei is necessary for macroscopic coherence, but not sufficient: It is also necessary that the neutrino wavesscattered from different nuclei be in phase with each other.

For scattering on many centers ${\cal A} \propto$ structure factor $F(\vec{q}),$

$$
\mathcal{A} \propto F(\vec{k}-\vec{k}') = \sum_{i} e^{i(\vec{k}-\vec{k}')\vec{r}_i}, \qquad \sigma \propto |F(\vec{k}-\vec{k}')|^2.
$$

[N.B.: If one writes the density of scatterers as $\rho(\vec{x}) = \sum_i \delta^3$ $^{3}(\vec{x}%)^{2}=\left| \vec{x}-\vec{x}^{^{\prime }}\right| ^{2}$ $-\vec{x}_i$), factor F takes the familiar form $F(\vec{q}) = \int d^3x \rho(\vec{x})e^{i\vec{q}\vec{x}}$].

What was wrong?

Absence of recoil of the individual nuclei is necessary for macroscopic coherence, but not sufficient: It is also necessary that the neutrino wavesscattered from different nuclei be in phase with each other.

For scattering on many centers ${\cal A} \propto$ structure factor $F(\vec{q}),$

$$
\mathcal{A} \propto F(\vec{k}-\vec{k}') = \sum_{i} e^{i(\vec{k}-\vec{k}')\vec{r}_i}, \qquad \sigma \propto |F(\vec{k}-\vec{k}')|^2.
$$

[N.B.: If one writes the density of scatterers as $\rho(\vec{x}) = \sum_i \delta^3$ $^{3}(\vec{x}%)^{2}=\left| \vec{x}-\vec{x}^{^{\prime }}\right| ^{2}$ $-\vec{x}_i$), factor F takes the familiar form $F(\vec{q}) = \int d^3x \rho(\vec{x})e^{i\vec{q}\vec{x}}$]. Now,

$$
|F(\vec{q})|^2 = \sum_{i,j} e^{i\vec{q}(\vec{r}_i - \vec{r}_j)}.
$$

In general, for $q\max\{|\vec{r}_i-\vec{r}_j|\}\simeq qL\ll 1$ one has $|F|$ (\vec{q}) 2 2 \simeq $\sum\limits_{i,j}$ opposite case $qL\gg1$ only diagonal terms in the sum contribute, $|F(\vec{q})|$ $1 = N^2$; in the 2 2 = N.

What was wrong – contd.

For Weber's expts. the condition $|\vec{q}\,| < L^{-1}$ weaker cond. $|\vec{q}| < (2m_A T_D)^{1/2} \sim 50$ M $^{-1} \sim 10^{-5}$ eV was violated (only <u>much</u> $\frac{1}{\sqrt{2}}$ 2 $^2 \sim 50~\mathrm{MeV}$ was met).

Crystals are a special case. $|\vec{q}|$ need not be very small! For

$$
\vec{q}(\vec{r}_i-\vec{r}_j)=2\pi n
$$

constructive interference, $d\sigma \propto N^2$ ². ⇔ Bragg condition:

 $2d \sin \theta = n\lambda$

 $(d\;$ is interplanar distance, $\;\lambda=2\pi/k).$

<u>But</u>: Bragg maxima lead to $d\sigma\propto N^2$ only in very narrow cones with $\Delta\Omega\propto N^{-2/3}$ and for energy intervals $\Delta E\propto N^{-1/3}.$ When integrate and E_ν lead to the usual $\,\sigma \propto N$ dependenc $2/$ 3 and for energy intervals $\Delta E\propto N^{-1}$ $\frac{1}{\sqrt{2}}$ $^3.$ When integrated over $\, \Omega \,$ $'_{\nu}$ lead to the usual $\sigma\propto N$ dependence.

Need ^a different idea.

A possibility:

Radiative neutrino scattering

 $\nu + A \rightarrow \nu + A + \gamma$

Photon energy ω_γ can be as large as the neutrino momentum transfer (not E_{rec} of the target particle, which can even be zero)! No need to detect tiny recoils.

A possibility:

Radiative neutrino scattering

 $\nu + A \rightarrow \nu + A + \gamma$

Photon energy ω_γ can be as large as the neutrino momentum transfer (not E_{rec} of the target particle, which can even be zero)! No need to detect tiny recoils.

An example: radiative νN scattering $(\nu + N \rightarrow \nu + N + \gamma)$. Discussed in particular in connection with low-energy MiniBooNE events (and much earlier also in connection with some unexplained events in Gargamelle data) – but not as macroscopically coherent process.

A possibility:

Radiative neutrino scattering

 $\nu + A \rightarrow \nu + A + \gamma$

Photon energy ω_γ can be as large as the neutrino momentum transfer (not E_{rec} of the target particle, which can even be zero)! No need to detect tiny recoils.

An example: radiative νN scattering $(\nu + N \rightarrow \nu + N + \gamma)$. Discussed in particular in connection with low-energy MiniBooNE events (and much earlier also in connection with some unexplained events in Gargamelle data) – but not as macroscopically coherent process.

Another possibility – bremsstrahlung on free electrons, $\nu + e \rightarrow \nu + e + \gamma$.
First sensidered by Lee and Sirlin (1964) and then by many other peaple. In First considered by Lee and Sirlin (1964) and then by many other people. In all but two papers – also not in connection with macroscopic coherence.

Radiative ν **-atom scatt.** with $\omega \gtrsim$ $\approx \omega_{\rm char}$

 $\mathbf{X}^{(n)}$ and $\mathbf{X}^{(n)}$. The set of $\mathbf{X}^{(n)}$

Energy-momentum conservation:

$$
p + k = p' + k' + k_{\gamma}
$$

EA, G. Arcadi, M. Lindner and S. Vogl, JHEP1810 (2018) 045 [arXiv:1806.10962]

$$
F(\vec{k} - \vec{k}') = \sum_{i} e^{i(\vec{k} - \vec{k}')\vec{r}_i} \longrightarrow \sum_{i} e^{i(\vec{k} - \vec{k}' - \vec{k}_\gamma)\vec{r}_i}
$$

The structure factor:

Radiative ν **-atom scatt.** with $\omega \gtrsim$ $\approx \omega_{\rm char}$

Energy-momentum conservation:

$$
p + k = p' + k' + k_{\gamma}
$$

EA, G. Arcadi, M. Lindner and S. Vogl, JHEP1810 (2018) 045 [arXiv:1806.10962]

$$
F(\vec{k} - \vec{k}') = \sum_{i} e^{i(\vec{k} - \vec{k}')\vec{r}_i} \longrightarrow \sum_{i} e^{i(\vec{k} - \vec{k}' - \vec{k}_\gamma)\vec{r}_i}
$$

 \diamondsuit \Diamond Coherence at macroscopic scales requires $|\vec{k}|$ $\vec{k} - \vec{k}' - \vec{k}_{\gamma} | L \ll 1,$ (not $|\vec{k}|$ $\vec{k}-\vec{k}'|L\ll1$!) $\quad\Rightarrow\quad$ all scattered waves in phase w/ each other.

Radiative ν **-atom scatt.** with $\omega \gtrsim$ $\approx \omega_{\rm char}$

The structure factor:

Energy-momentum conservation:

$$
p + k = p' + k' + k_{\gamma}
$$

EA, G. Arcadi, M. Lindner and S. Vogl, JHEP1810 (2018) 045 [arXiv:1806.10962]

$$
F(\vec{k} - \vec{k}') = \sum_{i} e^{i(\vec{k} - \vec{k}')\vec{r}_i} \longrightarrow \sum_{i} e^{i(\vec{k} - \vec{k}' - \vec{k}_\gamma)\vec{r}_i}
$$

 \diamondsuit \Diamond Coherence at macroscopic scales requires $|\vec{k}|$ $\vec{k} - \vec{k}' - \vec{k}_{\gamma} | L \ll 1,$ (not $|\vec{k}|$ $\vec{k}-\vec{k}'|L\ll1$!) \implies all scattered waves in phase w/ each other. From momentum conservation: recoil momentum

$$
\vec{p}' = (\vec{k} - \vec{k}') - \vec{k}_{\gamma}
$$

 \Rightarrow very small \vec{k} $\vec{k}-\vec{k}^{\,\prime}-\vec{k}_{\gamma}\,$ also means very small $\left|\vec{p}^{\,\prime}\right|\,-$ exactly what is needed for the process to be coherent!

Advantages:

- The energy of detected photons $\, \omega_{\gamma} \,$ can in principle be as large as momentum transfer to electrons from neutrinos $|\vec{k}|$ $\vec{k}-\vec{k}$ '|.
- Neither $|\vec{k}|$ $|\vec{k}-\vec{k}{\,}'|$ nor ω_{γ} need be small to ensure macroscopic coherence
	- $\mathcal{L}_{\mathcal{A}}$, and the set of th only their difference needs. For $\omega_{\gamma} \sim \omega \gg \omega_{at}$ no ω^4 suppression.

Advantages:

- The energy of detected photons $\, \omega_{\gamma} \,$ can in principle be as large as momentum transfer to electrons from neutrinos $|\vec{k}|$ $\vec{k}-\vec{k}$ '|.
- Neither $|\vec{k}|$ $|\vec{k}-\vec{k}{\,}'|$ nor ω_{γ} need be small to ensure macroscopic coherence
	- $\mathcal{L}_{\mathcal{A}}$, and the set of th only their difference needs. For $\omega_{\gamma} \sim \omega \gg \omega_{at}$ no ω^4 suppression.

The price to pay:

Phase-space volume gets severely constrained: \vec{k}_{γ} nearly equals $\vec{k} - \vec{k}^{\, \prime},$

$$
|\vec{p}'| = |\vec{k} - \vec{k}' - \vec{k}_{\gamma}| < p_0 \lesssim L^{-1}.
$$

(N.B.: $\,$ For $\,|\vec{p}\,'|$ much smaller than what is allowed by kinematics the photon and scattered neutrino are emitted in nearly forward direction).

Advantages:

- The energy of detected photons $\, \omega_{\gamma} \,$ can in principle be as large as momentum transfer to electrons from neutrinos $|\vec{k}|$ $\vec{k}-\vec{k}$ '|.
- Neither $|\vec{k}|$ $|\vec{k}-\vec{k}{\,}'|$ nor ω_{γ} need be small to ensure macroscopic coherence
	- $\mathcal{L}_{\mathcal{A}}$, and the set of th only their difference needs. For $\omega_{\gamma} \sim \omega \gg \omega_{at}$ no ω^4 suppression.

The price to pay:

Phase-space volume gets severely constrained: \vec{k}_{γ} nearly equals $\vec{k} - \vec{k}^{\, \prime},$

$$
|\vec{p}'| = |\vec{k} - \vec{k}' - \vec{k}_{\gamma}| < p_0 \lesssim L^{-1}.
$$

(N.B.: $\,$ For $\,|\vec{p}\,'|$ much smaller than what is allowed by kinematics the photon and scattered neutrino are emitted in nearly forward direction).

Can the increase due to macroscopic coherence compensate for thesuppression of the elementary cross section σ_0 ?

Rad.^ν **scatt. mediated by weak CC and NC**

I. Without constraining $|\vec{p}^{\,\prime}|$:

$$
\sigma_w \simeq \frac{G_F^2 g_V^2 e^2}{(2\pi)^3} \frac{16}{9} \frac{E_\nu^4}{m_e^2}.
$$

Rad.^ν **scatt. mediated by weak CC and NC**

I. Without constraining $|\vec{p}^{\,\prime}|$:

$$
\sigma_w \simeq \frac{G_F^2 g_V^2 e^2}{(2\pi)^3} \frac{16}{9} \frac{E_\nu^4}{m_e^2}
$$

·

II. Imposing $|\vec{p}^{\,\prime}| \leq p_{0}.$

$$
\sigma_w \simeq \frac{G_F^2 g_V^2 e^2}{(2\pi)^3} \frac{p_0^4}{2m_e^2}
$$

Cross section scales as $\,p^4_0\!\!$: a factor p^3_0 from the phase space with the electron recoil momentum constrained by $|\vec{p}^{\,\prime}|\leq p_{0},\,$ another $\,p_{0}\,$ from the squared modulus of the transition amplitude.

Problem: Coherent volume scales as $\, 1/p_{0}^{3}!$

Rad.^ν **scatt. mediated by weak CC and NC**

I. Without constraining $|\vec{p}^{\,\prime}|$:

$$
\sigma_w \simeq \frac{G_F^2 g_V^2 e^2}{(2\pi)^3} \frac{16}{9} \frac{E_\nu^4}{m_e^2}
$$

·

II. Imposing $|\vec{p}^{\,\prime}| \leq p_{0}.$

$$
\sigma_w \simeq \frac{G_F^2 g_V^2 e^2}{(2\pi)^3} \frac{p_0^4}{2m_e^2}
$$

Cross section scales as $\,p^4_0\!\!$: a factor p^3_0 from the phase space with the electron recoil momentum constrained by $|\vec{p}^{\,\prime}|\leq p_{0},\,$ another $\,p_{0}\,$ from the squared modulus of the transition amplitude.

Problem: Coherent volume scales as $\, 1/p_{0}^{3}!$

$$
\sigma_{tot} \propto p_0^4 \cdot \frac{1}{p_0^3} = p_0
$$

decreases with p_0 . Suppression of σ_{tot} instead of enhancement!

Kinematic enhancement in the case of μ_ν -mediated radiative $\nu-e$ scattering.

$$
\sigma_m(\omega_\gamma > \omega_0) \simeq \frac{\mu_\nu^2 e^4}{(2\pi)^3} \frac{1}{m_e^2} \cdot \frac{4}{3} \omega^2 \ln(\omega/\omega_0).
$$

For $|\vec{p}^{\,\prime}|\leq p_{0},$ to leading order in p_{0}

$$
\sigma_m(\omega_\gamma > \omega_0) \simeq \frac{\mu_\nu^2 \alpha^2}{\pi} \frac{1}{m_e^2} \cdot \frac{1}{3} \frac{p_0^3}{\omega_0}.
$$

Kinematic enhancement in the case of μ_ν -mediated radiative $\nu-e$ scattering.

$$
\sigma_m(\omega_\gamma > \omega_0) \simeq \frac{\mu_\nu^2 e^4}{(2\pi)^3} \frac{1}{m_e^2} \cdot \frac{4}{3} \omega^2 \ln(\omega/\omega_0).
$$

For $|\vec{p}^{\,\prime}|\leq p_{0},$ to leading order in p_{0}

$$
\sigma_m(\omega_\gamma > \omega_0) \simeq \frac{\mu_\nu^2 \alpha^2}{\pi} \frac{1}{m_e^2} \cdot \frac{1}{3} \frac{p_0^3}{\omega_0}.
$$

Kinematic enhancement is relatively mild: σ_m scales as p_0^3 rather than $p_0^4.$

$$
\sigma_{tot} \propto p_0^3 \cdot \frac{1}{p_0^3} = const. \quad \text{(for} \quad L^{-1} \lesssim p_0 \ll E_\nu, \, \omega_\gamma, \, E_\nu - \omega_\gamma \text{)}.
$$

Kinematic enhancement in the case of μ_ν -mediated radiative $\nu-e$ scattering.

$$
\sigma_m(\omega_\gamma > \omega_0) \simeq \frac{\mu_\nu^2 e^4}{(2\pi)^3} \frac{1}{m_e^2} \cdot \frac{4}{3} \omega^2 \ln(\omega/\omega_0).
$$

For $|\vec{p}^{\,\prime}|\leq p_{0},$ to leading order in p_{0}

$$
\sigma_m(\omega_\gamma > \omega_0) \simeq \frac{\mu_\nu^2 \alpha^2}{\pi} \frac{1}{m_e^2} \cdot \frac{1}{3} \frac{p_0^3}{\omega_0}.
$$

Kinematic enhancement is relatively mild: σ_m scales as p_0^3 rather than $p_0^4.$

$$
\sigma_{tot} \propto p_0^3 \cdot \frac{1}{p_0^3} = const. \quad \text{(for} \quad L^{-1} \lesssim p_0 \ll E_\nu, \, \omega_\gamma, \, E_\nu - \omega_\gamma \text{)}.
$$

For μ_ν -induced radiative νe scattering: Macroscopic coherence gives advantage over the elastic scattering only for $T \gtrsim 100 \ \mathrm{keV}.$

Kinematic enhancement in the case of μ_ν -mediated radiative $\nu-e$ scattering.

$$
\sigma_m(\omega_\gamma > \omega_0) \simeq \frac{\mu_\nu^2 e^4}{(2\pi)^3} \frac{1}{m_e^2} \cdot \frac{4}{3} \omega^2 \ln(\omega/\omega_0).
$$

For $|\vec{p}^{\,\prime}|\leq p_{0},$ to leading order in p_{0}

$$
\sigma_m(\omega_\gamma > \omega_0) \simeq \frac{\mu_\nu^2 \alpha^2}{\pi} \frac{1}{m_e^2} \cdot \frac{1}{3} \frac{p_0^3}{\omega_0}.
$$

Kinematic enhancement is relatively mild: σ_m scales as p_0^3 rather than $p_0^4.$

$$
\sigma_{tot} \propto p_0^3 \cdot \frac{1}{p_0^3} = const. \quad \text{(for} \quad L^{-1} \lesssim p_0 \ll E_\nu, \, \omega_\gamma, \, E_\nu - \omega_\gamma \text{)}.
$$

For μ_ν -induced radiative νe scattering: Macroscopic coherence gives advantage over the elastic scattering only for $T \gtrsim 100 \ \mathrm{keV}.$

<u>But:</u> it may allow detection of very low- E neutrinos ($\sim 10 \; \text{eV} - 10 \; \text{keV}$).

No enhancement of neutrino detection by huge factors.

We need a different idea!

Current theoretical activities

- CEvNS sensitivity to non-standard neutrino properties (NSI, electromagn. properties)
- Sensitivity to sterile neutrinos
- Implications for DM detection
- New detection mechanisms and techniques

<u>But:</u> Even theoretical calculations of the <u>standard</u> cross CEvNS sections need to be improved. Most theoretical formulas based on simplified approaches:

- Jan Jawa (Neglect axial-vector contributions or use simplified formulas
- $\mathcal{L}_{\mathcal{A}}$, and the set of $\mathcal{L}_{\mathcal{A}}$ Do not describe coherent and incoherent contributions in ^a unified way
- Jan Jawa (Use the common nuclear formfactor for N and Z

Sufficiently good approximations for first studies but need to be improved whenprecision measurements are needed!

Coherent vs. **incoherent scattering**

In the fully coherent limit

$$
q \ll R^{-1}
$$
, $F(\vec{q}^2) \to 1$, $\sigma_{tot} \propto N^2$.

In the fully incoherent limit

$$
q \gg R^{-1} \,, \qquad \sigma_{tot} \propto N \,,
$$

which requires

$$
|F(\vec{q}^2)| \to 1/\sqrt{N} \, .
$$

But with the usual definition of the formfactors, for $q\rightarrow\infty$

 $|F(\vec{q}^2)| \to 0$, not $\to 1/\sqrt{N}$.

No unified description of coherent and incoherent limits.

For non-relativistic targets are due to spin-spin interaction:

$$
\propto \vec{s}_{\nu} \cdot \vec{S}_T = s_{\nu}^- S_T^+ + s_{\nu}^+ S_T^- + s_{\nu z} S_{Tz} \qquad (s^{\pm} = \frac{1}{\sqrt{2}} (s_x \pm i s_y))
$$

 $S_{Tz} \; \propto \; (N_\uparrow - N_\downarrow), \; \; (Z_\uparrow - Z_\downarrow)$ – typically small compared to the total number of nucleons \Rightarrow the G_A contribution is subleading. Still should in general be
included if \vec{r} (of included if $\vec{J}\neq 0!$

For non-relativistic targets are due to spin-spin interaction:

$$
\propto \vec{s}_{\nu} \cdot \vec{S}_T = s_{\nu}^- S_T^+ + s_{\nu}^+ S_T^- + s_{\nu z} S_{Tz} \qquad (s^{\pm} = \frac{1}{\sqrt{2}} (s_x \pm i s_y))
$$

 $S_{Tz} \; \propto \; (N_\uparrow - N_\downarrow), \; \; (Z_\uparrow - Z_\downarrow)$ – typically small compared to the total number of nucleons \Rightarrow the G_A contribution is subleading. Still should in general be
included if \vec{r} (of included if $\vec{J}\neq 0!$

Can spin-flip contributions indeed be neglected when coherent effects areconsidered?

For non-relativistic targets are due to spin-spin interaction:

$$
\propto \vec{s}_{\nu} \cdot \vec{S}_T = s_{\nu}^- S_T^+ + s_{\nu}^+ S_T^- + s_{\nu z} S_{Tz} \qquad (s^{\pm} = \frac{1}{\sqrt{2}} (s_x \pm i s_y))
$$

 $S_{Tz} \; \propto \; (N_\uparrow - N_\downarrow), \; \; (Z_\uparrow - Z_\downarrow)$ – typically small compared to the total number of nucleons \Rightarrow the G_A contribution is subleading. Still should in general be
included if \vec{r} (of included if $\vec{J}\neq 0!$

Can spin-flip contributions indeed be neglected when coherent effects areconsidered?

For scattering of polarized neutrons on crystals – yes. What about neutrinoscattering on nucleons in ^a nucleus?

For non-relativistic targets are due to spin-spin interaction:

$$
\propto \vec{s}_{\nu} \cdot \vec{S}_T = s_{\nu}^- S_T^+ + s_{\nu}^+ S_T^- + s_{\nu z} S_{Tz} \qquad (s^{\pm} = \frac{1}{\sqrt{2}} (s_x \pm i s_y))
$$

 $S_{Tz} \; \propto \; (N_\uparrow - N_\downarrow), \; \; (Z_\uparrow - Z_\downarrow)$ – typically small compared to the total number of nucleons \Rightarrow the G_A contribution is subleading. Still should in general be
included if \vec{r} (of included if $\vec{J}\neq 0!$

Can spin-flip contributions indeed be neglected when coherent effects areconsidered?

For scattering of polarized neutrons on crystals – yes. What about neutrinoscattering on nucleons in ^a nucleus?

E.g. in the shell model: on a shell with total angular momentum $j: 2j + 1$ neutrons (and protons) which are considered indistinquishable, their wavefunction properly (anti)symmetrized – no tagging by spin-flip!

For non-relativistic targets are due to spin-spin interaction:

$$
\propto \vec{s}_{\nu} \cdot \vec{S}_T = s_{\nu}^- S_T^+ + s_{\nu}^+ S_T^- + s_{\nu z} S_{Tz} \qquad (s^{\pm} = \frac{1}{\sqrt{2}} (s_x \pm i s_y))
$$

 $S_{Tz} \; \propto \; (N_\uparrow - N_\downarrow), \; \; (Z_\uparrow - Z_\downarrow)$ – typically small compared to the total number of nucleons \Rightarrow the G_A contribution is subleading. Still should in general be
included if \vec{r} (of included if $\vec{J}\neq 0!$

Can spin-flip contributions indeed be neglected when coherent effects areconsidered?

For scattering of polarized neutrons on crystals $-$ yes. What about neutrino scattering on nucleons in ^a nucleus?

E.g. in the shell model: on a shell with total angular momentum $j: 2j + 1$ neutrons (and protons) which are considered indistinquishable, their wavefunction properly (anti)symmetrized – no tagging by spin-flip!

The issue still to be clarified.

A lot of interesting things yet to be done —

We are just in the beginning of the road!