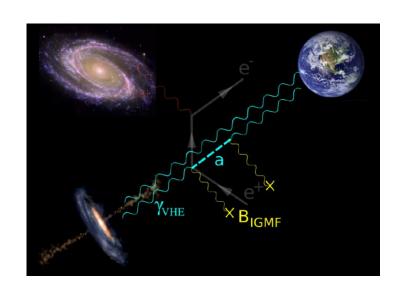

Finding the Axion

Axel Lindner

Sixth KSETA Plenary Workshop Durbach 26 February 2019



Finding the Axion

Axel Lindner

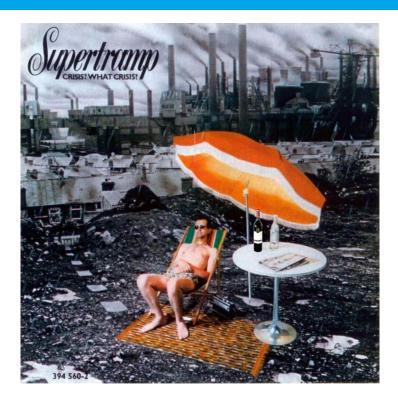
Sixth KSETA Plenary Workshop Durbach 26 February 2019

Particle physics in my undergraduate time

S. Weinberg 1986

(The cosmological constant problem, http://journals.aps.org/rmp/pdf/10.1103/RevModPhys.61.1)

Physics thrives on crises.


Unfortunately, we have run short of crises lately. The "standard model" of electroweak and strong interactions currently faces neither internal inconsistencies nor conflicts with experiment.

It has plenty of loose ends; we know no reason why the quarks and leptons should have the masses they have, but then we know no reason why they should not.

One veritable crisis: theoretical expectations for the cosmological constant.

Particle physics in 2019: crisis? what crisis?

- The LHC at CERN and others have confirmed our understanding of the microcosm.
- We've confirmed general relativity to a previously unimaginable precision.
- We've found a deep connection between particle physics and cosmology leading to an understanding of the universe's history.

Beyond the Standard Model?

The standard model (SM) of particle physics is

- extremely successful, but
- does not provide answers to crucial questions (a selection):
 - How to integrate non-zero neutrino masses?
 - What are dark matter and dark energy?
 - How to explain the baryon-antibaryon asymmetry of the universe?
 - Why is the Higgs so light?
 - Why is CP conserved in QCD?
 - Why is the vacuum energy so tiny?

Where to look for beyond-SM-Physics?

Wherever you can! An exemplary selection:

energy reach

> Laboratory experiments

Energy frontier
 10 TeV (LHC)

Precision frontier
 10² TeV (BELLE II, model dependent)

Rare decays
 10³ TeV (Mu3e, model dependent)

Light-through-walls
 10⁵ TeV (axions, model dependent)

Astrophysics

Stellar evolutions, light propagation
 10⁵ TeV (axions, model dependent)

Dark matter searches
 10⁹ TeV (axions, model dependent)

> Cosmology

CMB, gravitational waves
 10¹² TeV (inflation, model dependent)

Outline

> An introduction to axions and axion-like particles

Axions and ALPs in the sky?

- > Experimental approaches
 - ALPS II at DESY in Hamburg
 - IAXO and MADMAX

Summary

Introduction to axions and axion-like particles (ALPs)

Looking for an entrance to the dark sector

A dark sector beyond the Standard Model

- · is strongly motivated by cosmology,
- might be complex with several constituents.

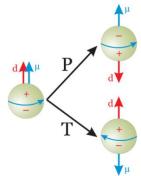
Axions and axion-like particles

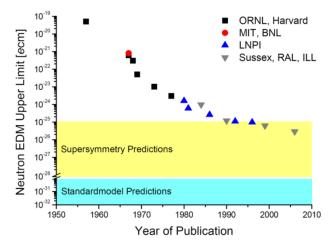
- are (pseudo)scalars strongly motivated by theory and cosmology (CP conservation in QCD ↔ neutron EDM),
- offer new experimental approaches towards the dark sector,
- might be showing up in astro (particle)physics already.

nttp://www.symmetrymagazine.org/ sites/default/files/images/standard/ -eature_DarkMatter3.jpg

The QCD axion

CP conservation of QCD and the neutron's EDM


CP conservation in QCD:


The QCD Lagrangian includes a CP violating term:

$$L_{\theta} = -\theta(\alpha_s/8\pi) \; \tilde{G}^a_{\mu\nu} G^a_{\mu\nu}$$

This would impose an electric dipole moment to the neutron for $\theta \neq 0$.

Any EDM of the neutron would violate CP:

The QCD axion

CP conservation of QCD and the neutron's EDM

CP conservation in QCD:

The QCD Lagrangian includes a CP violating term:

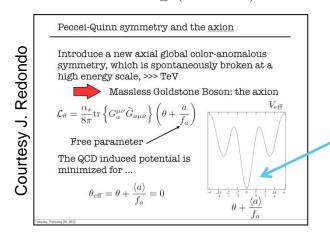
$$L_{\theta} = -\theta(\alpha_s/8\pi) \; \tilde{G}^a_{\mu\nu} G^a_{\mu\nu}$$

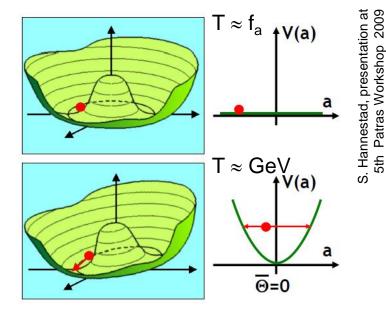
This would impose an electric dipole moment to the neutron for $\theta \neq 0$.

The observable CP-violation is given by

$$\theta + \arg(\det \mathcal{M})$$

- To our understanding, $\theta \qquad \text{(QCD parameter) and} \\ \arg\left(\det\mathcal{M}\right) \text{(weak interaction) are not related,}$
- but experimentally, $\mid \theta + \arg(\det \mathcal{M}) \mid < 10^{-9}$.


A fine tuning issue?



Instead of fine-tuning:

Introduce a new symmetry (Peccei-Quinn 1977) so that $\theta + \arg(\det \mathcal{M})$ evolves to zero.

The axion adjusts its v.e.v. to cancel the effects of any theta from QCD

As the PQ-symmetry is broken: a pseudo Goldstone boson should exist. This axion was predicted in 1978 by Weinberg and Wilczek.

5th Patras Workshop

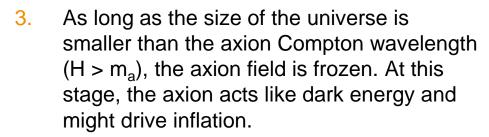
Mass and coupling determined by one energy scale

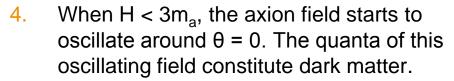
With the PQ symmetry breaking scale fa:

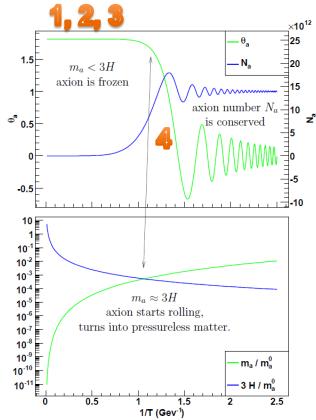
- > Mass: $m_a = 0.6 \text{ eV} \cdot (10^7 \text{GeV} / f_a)$
- Couplings ~ 1/ f_a (hence ~ m_a)

$$\mathcal{L}\supset -\frac{\alpha_s}{8\pi}\,\frac{C_{ag}}{f_a}\,a\,G^b_{\mu\nu}\tilde{G}^{b,\mu\nu} - \frac{\alpha}{8\pi}\,\frac{C_{a\gamma}}{f_a}\,a\,F_{\mu\nu}\tilde{F}^{\mu\nu} + \frac{1}{2}\frac{C_{af}}{f_a}\partial_{\mu}a\,\overline{\psi}_f\gamma^{\mu}\gamma_5\psi_f$$

$$a - - - \mathcal{C}^{\mu\nu} \qquad g \qquad \qquad \gamma \qquad \qquad a - - - \mathcal{C}^{\mu\nu} \qquad f$$
 CP conservation Exploited in most


experiments


in QCD


The axion and dark matter: a brief history of the universe

Ultracold dark matter from phase transition

- 1. Very high temperatures $T > f_a$: Nature picks a random initial θ_i .
- For T < f_a, the "Mexican hat" potential appears.

The axion and dark matter

Ultracold dark matter from phase transition

- Axions would constitute very cold dark matter in spite of their very low mass.
- Very roughly the abundancy of axion cold dark matter is given by:

$$\Omega_a / \Omega_c \sim (f_a / 10^{12} \text{GeV})^{7/6} = (6 \ \mu \text{eV} / \text{m}_a)^{7/6}$$

For m_a around 10 µeV the axion could make up all of the dark matter!

Axion dark matter could even be similar to a Bose-Einstein condensate.

See for example:

https://arxiv.org/abs/1501.05913,

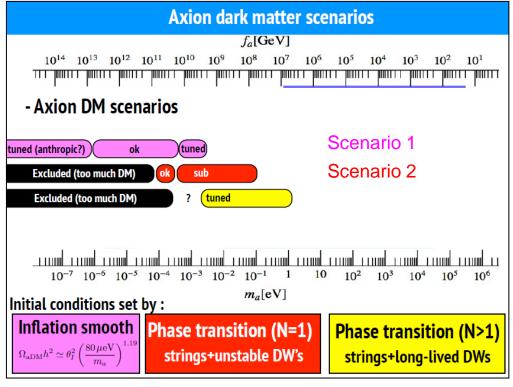
Cosmic Axion Bose-Einstein Condensation (Nilanjan Banik, Pierre Sikivie)

The axion and dark matter

Different cosmological scenarios

Inflation after PQ symmetry breaking (and no PQ restauration due to reheating):
 The observable universe originates from on PQ "patch",
 the amount of dark matter is given by f_a and the initial alignment angle θ_i.

The QCD axion could make up all of the Dark Matter in the universe in the 10⁻⁶ to 10⁻⁴ eV mass range (depending on the amount of fine tuning ...)


2. PQ symmetry breaking after inflation: The observable universe consists of many "patches" with different θ_i . The patches mix ("simple" theory), but one gets additional axion DM contributions from string and domain wall decays (hard to calculate).

Most favored region: around 10⁻⁴ eV.

The axion and dark matter

Different cosmological scenarios

N: color anomalies of the axial current associated with the axion.

Redondo at http://bctp.uni-bonn.de/bethe-forum/2016/axions/

Axion and axion-like particles (ALPs)

More than one QCD axion

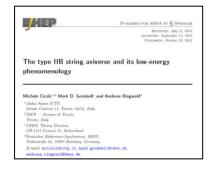
PHYSICAL REVIEW D 81, 123530 (2010) String axiverse

Asimina Arvanitaki, ^{1,2} Savas Dimopoulos, ³ Sergei Dubovsky, ^{3,4} Nemanja Kaloper, ⁵ and John March-Russell ⁶

¹ Berkeley Center for Theoretical Physics, University of California, Berkeley, California, 94720, USA

² Theoretical Physics Group, Luwrence Berkeley National Luboratory, Berkeley, California, 94720, USA

³ Department of Physics, Singrod University, Stanford, California, 9430, USA


⁴ Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Amiversury Pensyeet, 7a, 117312 Moscow, Russia

⁵ Department of Physics, University of California, Davis, California 95616, USA

⁶ Radolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, England

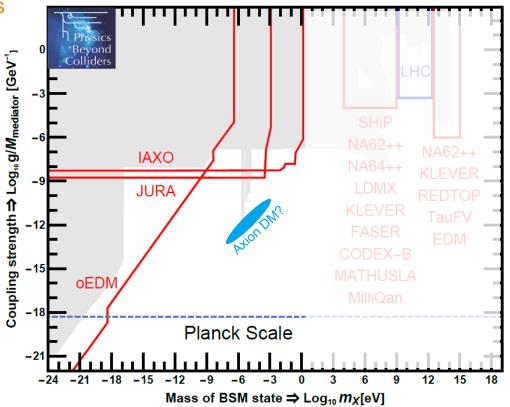
(Received 22 Cothors 2009; mobilised 28 June 2018)

 String theory suggests the simultaneous presence of many ultralight axions possibly populating each decade of mass down to the Hubble scale 10⁻³³ eV. Conversely the presence of such a plenitude of axions (an "axiverse") would be evidence for string theory.

 Moreover, we show how models can be constructed with additional light axion-like particles that could explain some intriguing astrophysical anomalies, and could be searched for in the next generation of axion helioscopes and light-shining-through-a-wall experiments.

ALPs

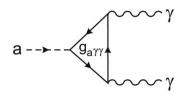
- don't solve the problem of CP conservation of QCD,
- have couplings ~ 1/ f_{alp}, but m_{alp} and f_{alp} are not related.



Axion and axion-like particles (ALPs)

Here: only low masses

Roughly m < 1 eV


arXiv:1901.09966v1 [hep-ex

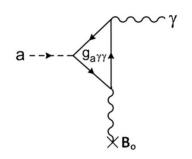
Axions and axion-like particles (ALPs)

How to look at low masses: exploiting photon couplings

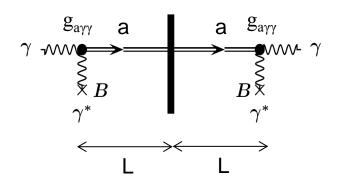
Axion decay to two photons

$$\Gamma_{A \to \gamma \gamma} = \frac{G_{A \gamma \gamma}^2 m_A^3}{64 \,\pi} = 1.1 \times 10^{-24} \text{ s}^{-1} \left(\frac{m_A}{\text{eV}}\right)^5$$

$$m_A = \frac{z^{1/2}}{1+z} \frac{f_\pi m_\pi}{f_A} = \frac{0.60 \text{ meV}}{f_A/10^{10} \text{ GeV}}$$


m _A [eV]	τ [T _{universe}]	f _A [LHC]	
1	10 ⁶	10 ²	
0.0001	10 ²⁶	10 ⁶	

Axions and axion-like particles (ALPs)

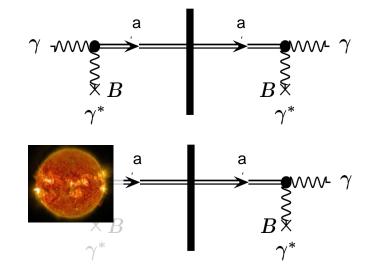

How to look at low masses: exploiting photon couplings

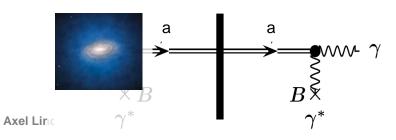
Primakoff-like axion conversion

and light-shining-through-walls.

$$P(\gamma \rightarrow a \rightarrow \gamma)$$

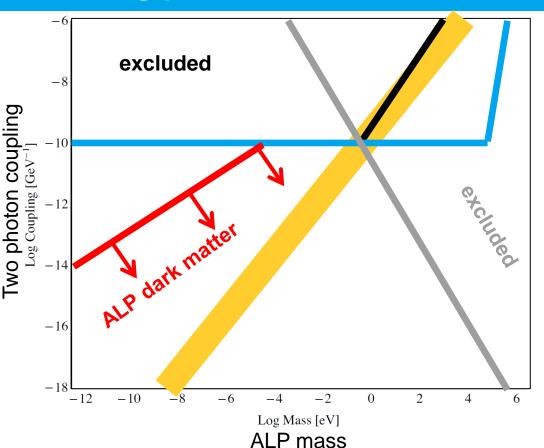
= $6 \cdot 10^{-38} \cdot (g_{a\gamma\gamma}[10^{-10} \text{GeV}^{-1}] \cdot \text{B}[1\text{T}] \cdot \text{L}[10\text{m}])^4$
= $5 \cdot 10^{-34} \text{ (ALPS II at DESY)}$




Sub-eV axions and axion-like particles (ALPs)

How to look: three kinds of light-shining-through-walls

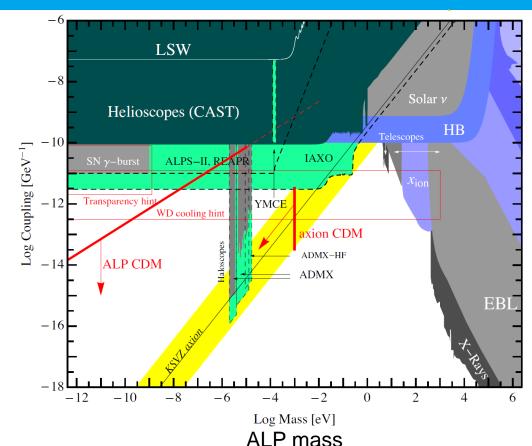
- Purely laboratory experiments "light-shining-through-walls", optical photons
- Helioscopes
 ALPs emitted by the sun,
 X-rays,


 Haloscopes looking for dark matter constituents, microwaves.

The big picture: ALPs

QCD axion range

Excluded by WISP experiments


Excluded by astronomy (ass. ALP DM)

Excluded by astrophysics / cosmology

Axions or ALPs being cold dark matter

The big picture: ALPs

QCD axion range

Excluded by WISP experiments

Excluded by astronomy (ass. ALP DM)

Excluded by astrophysics / cosmology

Axions or ALPs being cold dark matter

(figure needs to be updated)

Outline

> An introduction to axions and axion-like particles

Axions and ALPs in the sky?

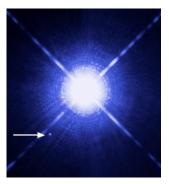
- > Experimental approaches
 - ALPS II at DESY in Hamburg
 - IAXO and MADMAX

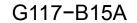
Summary

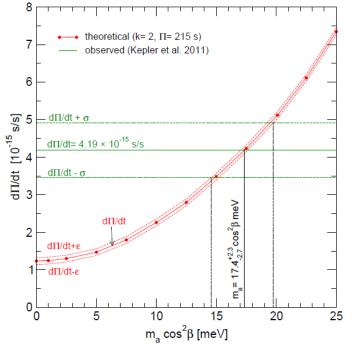
Hints from astrophysics?

- Stellar evolutions
- Propagation of TeV photons
- Photon propagation in magnetic fields

Stellar evolutions

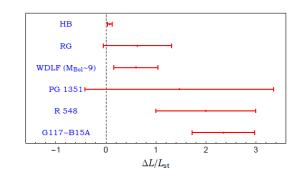

 Extra energy loss beyond SM expectations is indicated by stellar developments.

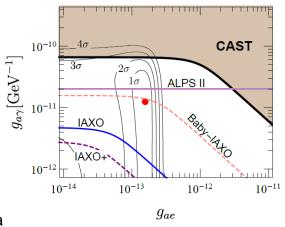

Stellar evolutions


- Extra energy loss beyond SM expectations is indicated by stellar developments.
- Example: white dwarf stars.

The change of frequency of a pulsating DA white dwarf measures its cooling rate.

Data indicate that the white dwarf cools "too fast".

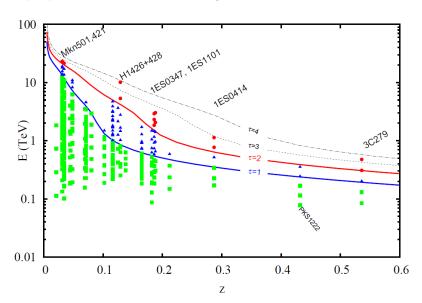



Stellar evolutions

- Extra energy loss beyond SM expectations is indicated by stellar developments.
- Such losses can be explained consistently by the emission of axions coupling to photons and electrons.
 Light ALPs would also work.

M. Giannotti, I. Irastorza, J. Redondo, A. Ringwald, http://arxiv.org/abs/1512.08108

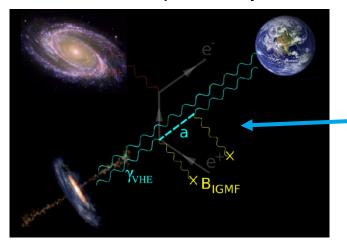
M. Giannotti, I. Irastorza, J. Redondo, A. Ringwald, K. Saikawa https://arxiv.org/abs/1708.02111


P. Di Vecchia, M. Giannotti, M. Lattanzi, A. Lindner https://arxiv.org/abs/1708.02111

Propagation of TeV photons

Anomalous transparency of the universe to TeV photons:

> TeV photons might not be absorbed in the intergalactic space due to $\gamma+\gamma \rightarrow e^+e^-$ scattering as predicted by QED.


D. Horns, M. Meyer, JCAP 1202 (2012) 033

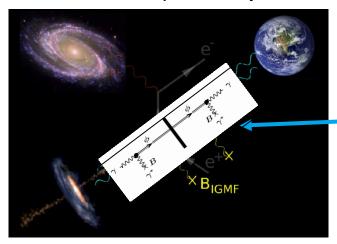
Propagation of TeV photons

Anomalous transparency of the universe to TeV photons:

- > TeV photons might not be absorbed in the intergalactic space due to $\gamma+\gamma \rightarrow e^+e^-$ scattering as predicted by QED.
- This could be explained by axion-like particles.

TeV photons in the universe

might convert in magnetic fields to ALPs via their two-photon coupling.

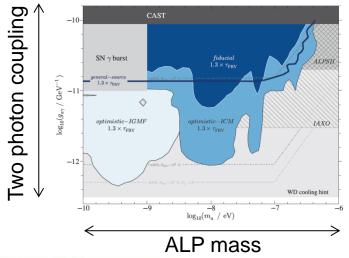

Such ALPs might convert back to photons in the vicinity of earth.

Propagation of TeV photons

Anomalous transparency of the universe to TeV photons:

- > TeV photons might not be absorbed in the intergalactic space due to $\gamma+\gamma \rightarrow e^+e^-$ scattering as predicted by QED.
- This could be explained by axion-like particles.

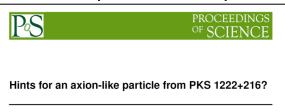
TeV photons in the universe:


"Light-shining-through-the-wall" of extragalactic background light?

Propagation of TeV photons

Anomalous transparency of the universe to TeV photons:

- > TeV photons might not be absorbed in the intergalactic space due to $\gamma+\gamma \rightarrow e^+e^-$ scattering as predicted by QED.
- This could be explained by axion-like particles.


A very similar axion-photon coupling as derived from stellar developments is required!

```
M. Meyer, D. Horns, M. Raue,
arXiv:1302.1208 [astro-ph.HE], Phys. Rev. D 87, 035027 (2013)
S. V. Troitsky,
arXiv:1612.01864 [astro-ph.HE], JETP Lett. 105 (2017) no.1, 55
```


Propagation of TeV photons

ALPs to explain an unexpected high transparency of the universe for TeV photons:

https://arxiv.org/abs/1409.4401

Sensitivity of the Cherenkov Telescope Array to the detection of axion-like particles at high gamma-ray opacities

https://arxiv.org/abs/1410.1556

Axion-like particles and the propagation of gamma rays over astronomical distances

https://arxiv.org/abs/1612.01864

Advantages of axion-like particles for the description of very-high-energy blazar spectra $\,$

https://arxiv.org/abs/1503.04436

PHYSICAL REVIEW D 86, 075024 (2012)

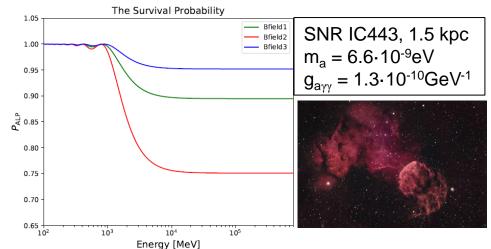
Hardening of TeV gamma spectrum of active galactic nuclei in galaxy clusters by conversions of photons into axionlike particles

https://arxiv.org/abs/1207.0776

PHYSICAL REVIEW D 93, 045014 (2016)

Towards discrimination between galactic and intergalactic axion-photon mixing

https://arxiv.org/abs/1507.08640

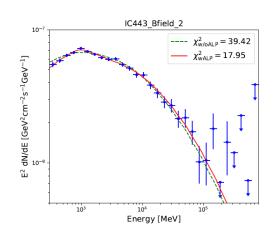

Distance-dependent hardenings in gamma-ray blazar spectra corrected for the absorption on the extragalactic background light

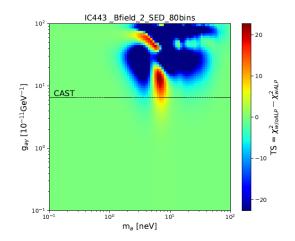
https://arxiv.org/abs/1810.03443

Photon propagation in magnetic fields

Photon spectra might be changed due to photon-ALP conversion in magnetic fields (10.1103/PhysRevD.97.063003, Zi-Qing Xia et al.):

$$\begin{split} P_{\rm ALP} \; &= \; 1 - P_{\gamma \to a} \\ \; &= \; 1 - \frac{1}{1 + E_{\rm c}^2/E_{\gamma}^2} \sin^2 \left[\frac{g_{a\gamma} B_{\rm T} l}{2} \sqrt{1 + \frac{E_{\rm c}^2}{E_{\gamma}^2}} \right] \end{split}$$
 where the characteristic energy $E_{\rm c}$ is defined as
$$E_{\rm c} = \frac{\left| m_a^2 - w_{\rm pl}^2 \right|}{2g_{a\gamma} B_{\rm T}},$$

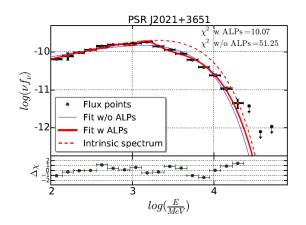

Spectral modulations might hint at the existence of ALPs!

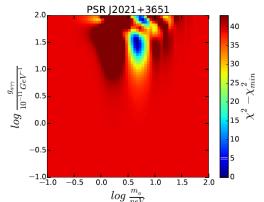


Photon propagation in magnetic fields: conflicting results!

Galactic SNR (10.1103/PhysRevD.97.063003, Zi-Qing Xia et al.):

Evidence for ALPs from IC443?


No ALPs indications from W44 and W51C, method checked with close SNRs.



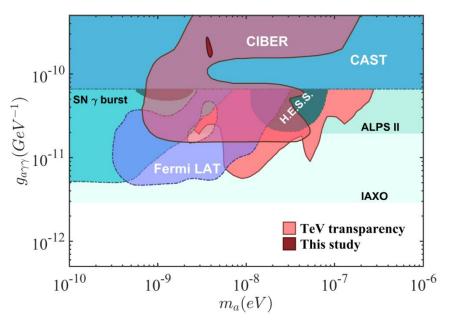
Photon propagation in magnetic fields: conflicting results!

Galactic pulsars (J. Majumdar et al JCAP04(2018)048):

Pulsar name	N_0	Γ_1	E_{cut}	$g_{a\gamma\gamma}$	m_a
	$[10^{-9} \mathrm{MeV^{-1} \ cm^{-2} \ s^{-1}}]$		[GeV]	$\left[10^{-10} \mathrm{GeV}^{-1}\right]$	[neV]
J1420-6048	0.0016(2)	1.74(4)	5.4(6)	1.7(3)	3.6(1)
J1648-4611	0.0028(2)	0.88(3)	3.4(2)	5.3(9)	4.3(1)
J1702-4128	0.13(3)	0.9(1)	1.0(2)	4.4(2)	8.1(5)
J1718-3825	0.024(2)	1.48(4)	2.1(1)	2.4(3)	8.9(2)
J2021+3651	0.18(1)	1.45(3)	3.5(1)	3.5(3)	4.4(1)
J2240+5832	0.005(1)	1.5(1)	2.4(6)	2.1(4)	3.7(3)

Pulsars selected according to the magnetic field strength along the line of sight.

Method checked with close pulsar.



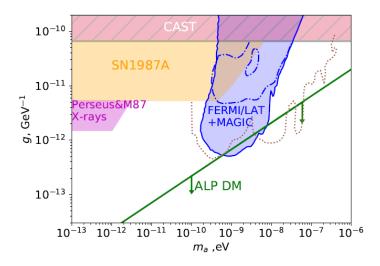
Axions and ALPs in the sky

Photon propagation in magnetic fields: conflicting results!

Galactic pulsars (J. Majumdar et al JCAP04(2018)048):

Surprising agreement with SNR analyses!

Conflict to other exclusions!


Do we understand astrophysics?

Axions and ALPs in the sky

Photon propagation in magnetic fields: conflicting results!

NGC 1275, Perseus cluster (D. Malyshev et al, arXiv:1805.04388 [astro-ph.HE]):

No evidence for ALPs! "Galactic hints" excluded?

Do we understand astrophysics?

Axions and ALPs in the sky

Hints from astrophysics?

- > Stellar evolutions
- > Propagation of TeV photons
- > Photon propagation in magnetic fields

Nothing conclusive yet, but lot's of interesting data.

Strive for model independent measurements: ALPS II at DESY!

Outline

> An introduction to axions and axion-like particles

> Axions and ALPs in the sky?

- > Experimental approaches
 - ALPS II at DESY in Hamburg
 - IAXO and MADMAX

Summary

Pros and cons for different experimental approaches

ALP parameter	LSW (laboratory)	Helioscopes	Dark matter searches
Parity and spin	yes	perhaps	yes
Coupling g _{ayy}	yes	no	no
Coupling · flux	(does not apply)	yes	yes
Mass	perhaps	perhaps	yes
Electron coupling	no	yes	no
Rely on astrophysical assumptions	no	yes	yes
QCD axion	no (?)	yes	yes

The three approaches complement each other.

Selection of experiments: laboratory

Name	Туре	Sens (10 ⁻¹¹ GeV ⁻¹)	Location	Status	Reference
ALPS II	LSW	2, m < 0.1 meV	DESY	construction	https://arxiv.org/ abs/1302.5647
OSQAR	LSW	5,700, m < 1 meV	CERN	finished (?)	https://arxiv.org/ abs/1410.2566
NEXT/STAX	LSW	0.1, m < 0.01 meV		proposed	https://arxiv.org/ abs/1510.06892
ARIADNE	5th force	Nucleon interact. NMR, axion 0.1 < m < 10 meV		R&D	https://arxiv.org/ abs/1710.05413

Selection of experiments: helioscopes

Name	Туре	Sens (10 ⁻¹¹ GeV ⁻¹)	Location	Status	Reference
CAST	$g_{a\gamma\gamma}$	6.6, m < 20 meV, axion around 1000 meV	CERN	finished	https://arxiv.org/ abs/1705.02290
IAXO (babylAXO)	$g_{a\gamma\gamma}$	0.5, m < 10 meV, axion 1 < m < 3000 meV	DESY	CDR	https://arxiv.org/ abs/1401.3233
TASTE	$g_{a\gamma\gamma}$	2, m < 10 meV, axion 20 < m < 100 meV	INR Troitsk	proposed	https://arxiv.org/ abs/1706.09378

Selection of experiments: haloscopes, photon coupling (1)

Name	Туре	ALP / axion mass range	Location	Status	Reference
ABRACADABRA	toroid	ALP 10 ⁻¹⁴ to 10 ⁻⁶ eV	MIT	prototype	https://arxiv.org/abs /1602.01086
ADMX G2	cavity	Axion, 10 ⁻⁶ to 10 ⁻⁵ eV	Seattle	running	Phys. Rev. Lett. 120, 151301
BEAST	capacitive	ALP 10 ⁻¹¹ eV	Perth	tests	https://arxiv.org/abs /1803.07755
BRASS	dish	ALP (axion) 10 ⁻⁵ to 10 ⁻² eV	Hamburg	proposed	http://www.iexp.uni - hamburg.de/groups /astroparticle/brass /brassweb.htm
CULTASK&more	cavity	Axion, 10 ⁻⁵ to 10 ⁻⁴ eV	Daejeon	construction	https://capp.ibs.re. kr/html/capp_en/

Selection of experiments: haloscopes, photon coupling (2)

Name	Туре	ALP / axion mass range	Location	Status	Reference
FUNK	dish	(hidden photon search)	KIT	running	https://arxiv.org/abs /1711.02961
HAYSTAC	cavity	ALP, ≈ 2.4·10 ⁻⁵ eV	New Haven	running	https://arxiv.org/abs /1803.03690
KLASH	cavity	Axion, 2-10 ⁻⁷ eV	INFN	proposed	https://arxiv.org/abs /1707.06010
LC circuit		ALP, 10 ⁻¹¹ to 10 ⁻⁷ eV	LANL	prototype	https://arxiv.org/abs /1802.01721
MADMAX	dish, dielect. booster	Axion, 4·10 ⁻⁵ to 4·10 ⁻⁴ eV	DESY	preparation	https://arxiv.org/abs /1712.01062

Selection of experiments: haloscopes, photon coupling (3)

Name	Туре	ALP / axion mass range	Location	Status	Reference
Multilayer Haloscope	multi- layers	Axion, 10 ⁻¹ to 10 eV		proposed	https://arxiv.org/abs /1803.11455
ORGAN	cavity	ALP 10 ⁻⁴ eV	Perth	prototype	https://arxiv.org/abs /1706.00209
ORPHEUS	open resona- tor	Axion, 10 ⁻⁴ to 10 ⁻³ eV	Seattle	prototype	https://doi.org/10.1 103/PhysRevD.91. 011701
RADES	cavity	Axion, ≈ 3.5·10 ⁻⁵ eV	CERN / CAST	protoype	https://arxiv.org/abs /1803.01243

Selection of experiments: haloscopes, spin coupling

Name	Туре	ALP / axion mass range	Location	Status	Reference
CASPEr	NMR	ALP, axion, 10 ⁻¹⁷ to 10 ⁻⁶ eV	Mainz	proposed	https://arxiv.org/abs /1711.08999
GNOME	magnet ometer	Domainwalls, 10 ⁻²¹ to 10 ⁻¹⁰ eV	(Mainz)	running	https://budker.uni- mainz.de/gnome/
HeXeniA	NMR	ALP, axion 10 ⁻¹⁴ to 10 ⁻¹² eV	Heidelberg	proposed	
QUAX	NMR	Axion, $\approx 2 \cdot 10^{-4} \text{ eV}$		proposed	https://doi.org/10.1 016/j.dark.2017.01. 003

Experiments (possibly) located at DESY in Hamburg

Sens (10⁻¹¹ GeV⁻¹)

Ttallio	. 7 6 0	00110 (10 001)		Otatus	
ALPS II	LSW	2, m < 0.1 meV	DESY	construction	https://arxiv.org/ abs/1302.5647
Name	Туре	Sens (10 ⁻¹¹ GeV ⁻¹)	Location	Status	Reference
IAXO (babylAXO)	$g_{a\gamma\gamma}$	0.5, m < 10 meV, axion 1 < m < 3000 meV	DESY	CDR	https://arxiv.org/ abs/1401.3233

Name	Туре	ALP / axion mass range	Location	Status	Reference
MADMAX	dish, dielect. booster	Axion, 4·10 ⁻⁵ to 4·10 ⁻⁴ eV	DESY	preparation	https://arxiv.org/ abs/1901.07401

These are to be complemented with other experiments (see haloscope mass range for example)!

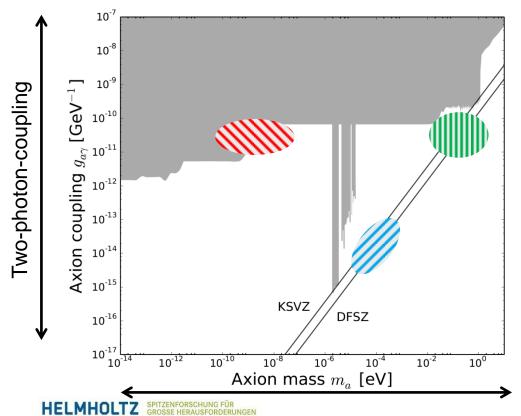
Name

Type

Reference

Location Status

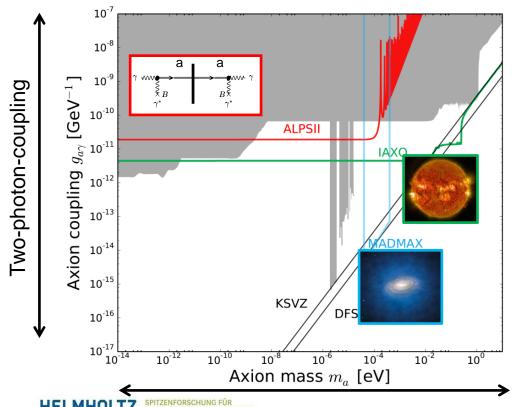
DESY in Hamburg


Axion physics:

Opportunity to have particle physics experiments on-site complementing participation in remote experiments (ATLAS, CMS, BELLE II).

Axions and axion-like particles: approaches at DESY

Where to look: hot spots


Three main regions of interest:

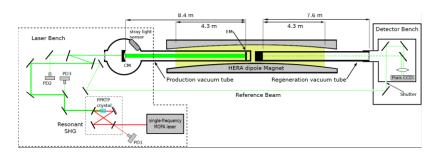
- Axion-like particles:
 photon propagation, stellar evolution,
 m_a < 10⁻⁷eV, g_{av} = O(10⁻¹⁰ -10⁻¹¹GeV⁻¹)
- QCD axions:
 CP, stellar evolution, (dark matter),
 m_a = O(10⁻³eV), g_{av} = O(10⁻¹¹GeV⁻¹)
- QCD axions:
 CP, dark matter,
 m_a = O(10⁻⁵eV), g_{av} = O(10⁻¹⁴GeV⁻¹)

Axions and axion-like particles: approaches at DESY

Where to look: hot spots

Three main regions of interest:

- Axion-like particles: photon propagation, stellar evolution, $m_a < 10^{-7} eV$, $g_{a\gamma} = O(10^{-10} 10^{-11} GeV^{-1})$, ALPS II.
- QCD axions: CP, stellar evolution, (dark matter), $m_a = O(10^{-3} eV)$, $g_{a\gamma} = O(10^{-11} GeV^{-1})$, IAXO.
- QCD axions: CP, dark matter, $m_a = O(10^{-5}eV)$, $g_{a\gamma} = O(10^{-14}GeV^{-1})$, MADMAX


Any Light Particle Searches @ DESY in Hamburg

From ALPS I to ALPS II

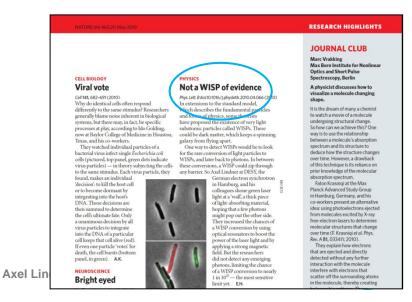
ALPS I

- based on one HERA proton accelerator dipole magnet,
- initiated 2006 by theory, exp. particle physics and administration,
- approved 2007 and concluded 2010,
- most sensitive ALP search experiment in the lab up to 2014 (surpassed by OSQAR @ CERN using two LHC dipoles).

Basis of success: combine forces with LIGO community to implement an optical resonator in the magnet bore.

Any Light Particle Searches @ DESY in Hamburg

From ALPS I to ALPS II


R Bähre et al 2013 JINST 8 T09001

ALPS I

- based on one HERA proton accelerator dipole magnet,
- initiated 2006 by theory, exp. particle physics and administration,
- approved 2007 and concluded 2010,
- most sensitive ALP search experiment in the lab up to 2014 (surpassed by OSQAR @ CERN using two LHC dipoles).

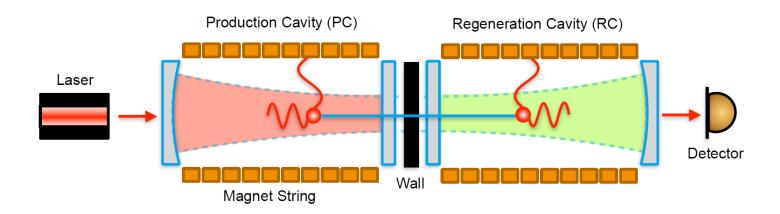
ALPS II

- proposed 2011,
 TDR evaluated in 2012,
 directorate decided to continue
 with the preparatory phase,
- construction phase started in 2017.
- Main goal: increase sensitivity on g_{aγ} by > 10³ to probe for axion-like particles motivated by astrophysics phenomena.

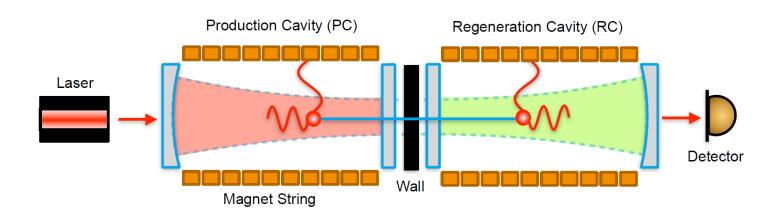
ALPS II: aiming for start-up in 2020 @ DESY in HH

Collaboration

ALPS II main contributions								
Partner	Magnets	Optics	Detectors	Infrastructure				
DESY	Χ	Χ	Χ	X				
AEI Hannover		X						
U. Cardiff		X						
U. Florida		X	Χ	X				
U. Mainz			Χ					


Significant funding support also by the

ALPS II @ DESY in Hamburg: concept



10+10 dipole magnets from the HERA proton accelerator

Production cavity and regeneration cavity, mode matched

ALPS II @ DESY in Hamburg: concept

$$P_{\gamma \to \phi \to \gamma} = \frac{1}{16} \cdot \mathcal{F}_{PC} \mathcal{F}_{RC} \cdot (g_{a\gamma\gamma}Bl)^4 = 6 \cdot 10^{-38} \cdot \mathcal{F}_{PC} \mathcal{F}_{RC} \cdot \left(\frac{g_{a\gamma\gamma}}{10^{-10} GeV^{-1}} \frac{B}{1 T} \frac{l}{10m}\right)^4$$

$$= 10^{-25}$$
5.000 40.000
0.2
5.3 8.8

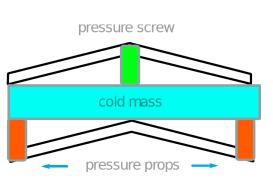
30 W cw laser at 1064 nm: 2·10⁻⁵ photon/s

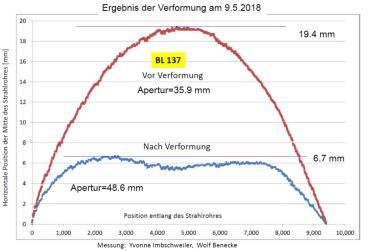
ALPS II site: a straight section of the HERA tunnel

> The HERA tunnel was cleared in 2018.

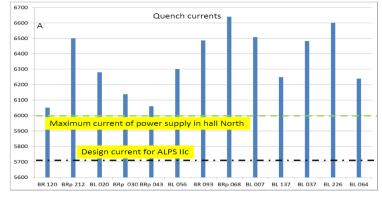
ALPS II main components: magnets from HERA

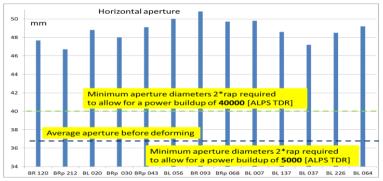
- 10+10 dipoles from HERA, each 5.3 T on 8.8 m.
- To be straightened to achieve
 ≈ 50 mm aperture
 from 35 mm (600 m bending radius)



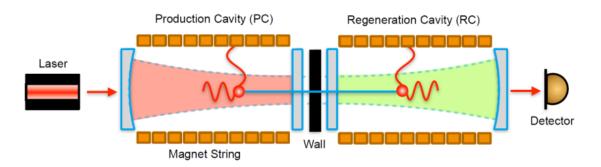

ALPS II main components: magnets from HERA

- > 10+10 dipoles from HERA, each 5.3 T on 8.8 m.
- To be straightened to achieve
 ≈ 50 mm aperture
 from 35 mm (600 m bending radius)



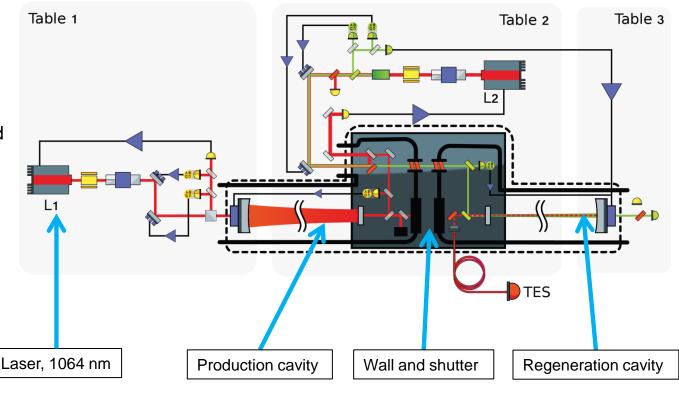

ALPS II main components: magnets from HERA

- > 10+10 dipoles from HERA, each 5.3 T on 8.8 m.
- To be straightened to achieve≈ 50 mm aperture.
- 16 magnets modified successfully (out of 16).
- Test string assembled successfully



ALPS II main components: optics adapted from LIGO

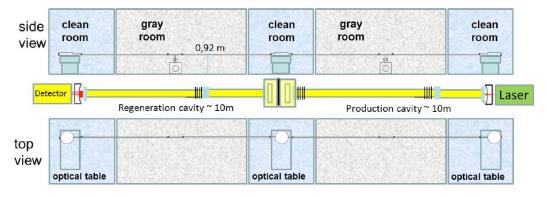
- Mode-matched optical resonators before ("PC") and behind ("RC") the wall.
- > Relative angle between PC and RC less than 0.5 µrad.
- > Each about 100 m long, need to compensate seismic noise.
- Power built-up PC: 5,000: 150 kW circulating power.
- > Power built-up RC: 40,000: length relative to light wavelength stabilized to 0.5 pm.



ALPS II main components: optics adapted from LIGO

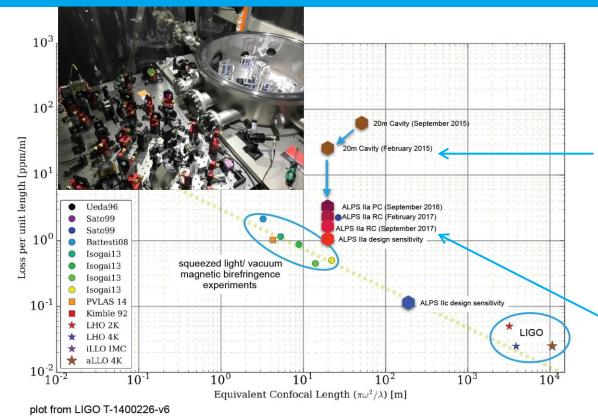
Laser:

- developed for LIGO,
- based on 2 W NPRO by Innolight/Mephisto (Nd:YAG, neodymium-doped yttrium aluminium garnet),
- 1064 nm, 35 W, M²<1.1



ALPS II main components: optics

The optics is developed in a 20 m long dedicated lab "ALPS IIa".



ALPS II main components: optics status summary

Research Article

Vol. 24, No. 25 | 12 Dec 2016 | OPTICS EXPRESS 29237

Optics EXPRESS

Characterization of optical systems for the ALPS II experiment

AARON D. SPECTOR, $^{1,^*}$ JAN H. PÕLD, 2 ROBIN BÄHRE, 3,4 AXEL LINDNER, 2 AND BENNO WILLKE 3,4

¹Institut f
ür Experimentalphysik, Universit
ät Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany

²Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg, Germany
³Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Callinstraße 38 D-30167

Hannover, Germany

⁴Institute for Gravitational Physics of the Leibniz Universität Hannover, Callinstraβe 38, D-30167

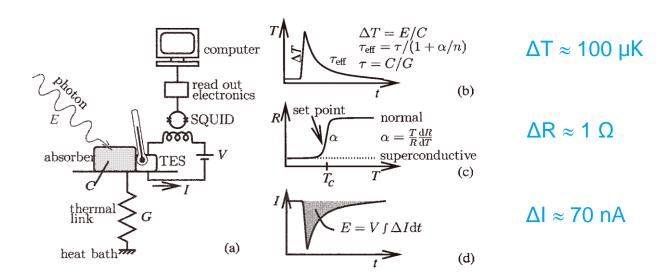
Hannover Germany
*agron.spector@desv.de

Demonstration of the length stability requirements for ALPS II with a high finesse 10 m cavity

Jan H. Põld,^{1,*} and Aaron D. Spector¹

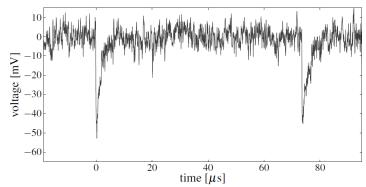
Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg, Germany

*jan.pold@desy.de


https://arxiv.org/abs/1710.06634

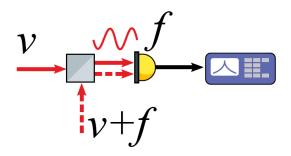
DESY:


Transition edge sensor (TES) operated at 80 mK.



DESY:

- Transition edge sensor (TES) operated at 80 mK.
- Single 1064 nm photon detection demonstrated:
 - 5% energy resolution
 - 10⁻⁴ counts/s intrinsic background
- R&D has resumed with a new cryostat in summer 2018.

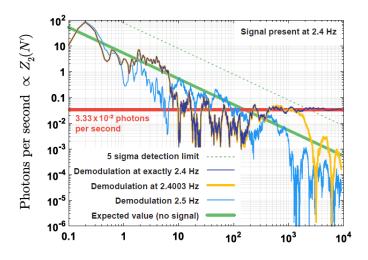


DESY:

- Transition edge sensor (TES) operated at 80 mK.
- Single 1064 nm photon detection demonstrated:
 - 5% energy resolution
 - 10-4 counts/s intrinsic background
- R&D has resumed with a new cryostat in summer 2018.

University of Florida:

Heterodyne detection scheme.

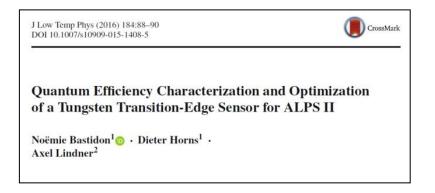


DESY:

- Transition edge sensor (TES) operated at 80 mK.
- Single 1064 nm photon detection demonstrated:
 - 5% energy resolution
 - 10-4 counts/s intrinsic background
- R&D has resumed with a new cryostat in summer 2018.

University of Florida:

- > Heterodyne detection scheme.
- 0.03 photons/s detected.



DESY:

- Transition edge sensor (TES) operated at 80 mK.
- Single 1064 nm photon detection demonstrated.

University of Florida:

- > Heterodyne detection scheme.
- 0.03 photons/s detected.

Coherent Detection of Ultra-weak Electromagnetic Fields

Zachary R. Bush¹, Simon Barke¹, Harold Hollis¹, Aaron D. Spector²,
Ayman Hallal¹, Giuseppe Messineo¹, D.B. Tanner ¹, Guido Mueller¹
¹Department of Physics, University of Florida, PO Box 118440, Gainesville, Florida, 32611, USA
²Deutsches Elektronen-Synchrotron (DESY), Notkestrae 85, D-22607 Hamburg, Germany
(Dated: November 22, 2018)

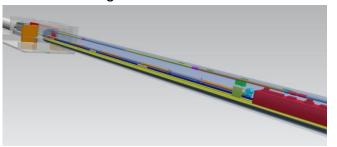
https://arxiv.org/abs/1710.04209

ALPS II @ DESY in Hamburg

Results and schedule

Results:

- Axions and ALPs: none (no data run yet ...)
- Publications:
 5 on optics and detector developments;
 several conference contributions.
- People (since 2012):
 7 Ph.D. theses completed,
 about 7 to come,
 5 postdocs left for a next career step.

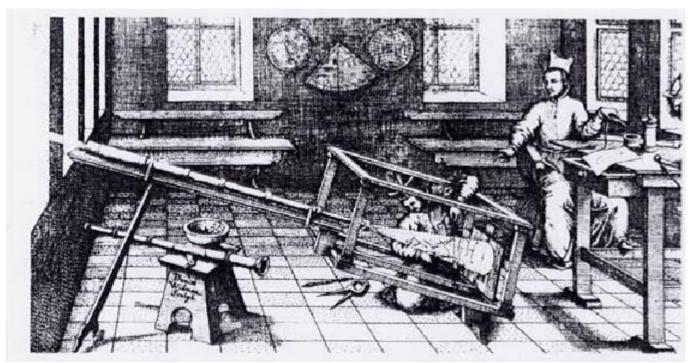


Jan Dreyling-Eschweiler

Reza Hodajerdi

Schedule and site:

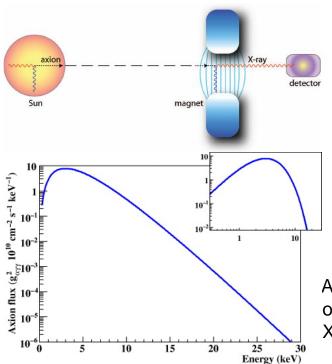
Start data taking in the HERA tunnel in late 2020.



HERA hall North (former H1 experiment at HERA)

Axions from the sun

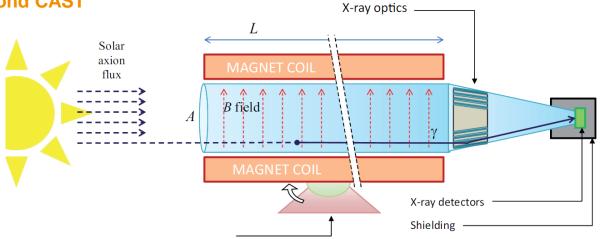
Helioscopes



Father Christoph Scheiner (1575 – 1650)

Axions from the sun: CAST at CERN

LHC prototype magnet pointing to the sun.



Axions or ALPs from the center of the sun would come with X-ray energies, thermal spectrum.

A factor of 10 beyond CAST

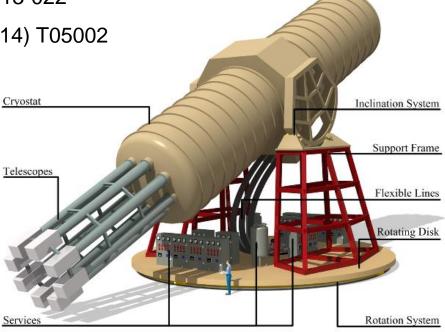
$$g_{a\gamma}^4 \propto \underbrace{b^{1/2}\epsilon^{-1}}_{\text{detectors}} \times \underbrace{a^{1/2}\epsilon_o^{-1}}_{\text{optics}} \times \underbrace{(BL)^{-2}A^{-1}}_{\text{magnet}} \times \underbrace{t^{-1/2}}_{\text{exposure}}$$

Compared to CAST:

1/17

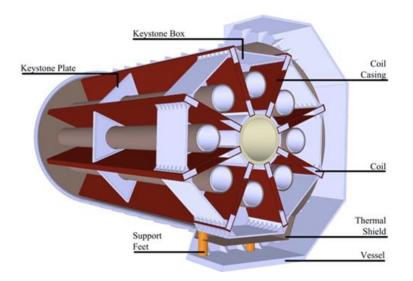
1/300

1/3.5



Baseline

> IAXO Letter of Intent: CERN-SPSC-2013-022

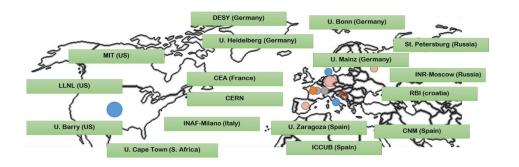

> IAXO Conceptual Design: JINST 9 (2014) T05002

Baseline

- > IAXO Letter of Intent: CERN-SPSC-2013-022
- > IAXO Conceptual Design: JINST 9 (2014) T05002

Cryostat

Property		Value
Cryostat dimensions:	Overall length (m)	25
Ci yostat dimensions.	Outer diameter (m)	5.2
	Cryostat volume (m ³)	~ 530
Toroid size:	Inner radius, R_{in} (m)	1.0
201014 51201	Outer radius, R_{out} (m)	2.0
	Inner axial length (m)	21.0
	Outer axial length (m)	21.8
Mass:	Conductor (tons)	65
	Cold Mass (tons)	130
	Cryostat (tons)	35
	Total assembly (tons)	~ 250
Coils:	Number of racetrack coils	8
	Winding pack width (mm)	384
	Winding pack height (mm)	144
	Turns/coil	180
	Nominal current, I_{op} (kA)	12.0
	Stored energy, E (MJ)	500
	Inductance (H)	6.9
	Peak magnetic field, B_p (T)	5.4
	Average field in the bores (T)	2.5
Conductor:	Overall size (mm ²)	35×8
	Number of strands	40
	Strand diameter (mm)	1.3
	Critical current $@$ 5 T, I_c (kA)	58
	Operating temperature, T_{op} (K)	4.5
	Operational margin	40%
	emperature margin @ 5.4 T (K)	1.9
Heat Load:	at 4.5 K (W)	~ 150
	at 60-80 K (kW)	~ 1.6



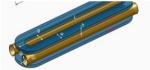
Summary

Collaboration:

- 17 Institutes from 8 countries.
- Formal collaboration founding 03 July 2017 at DESY.
- DESY has offered to host IAXO.

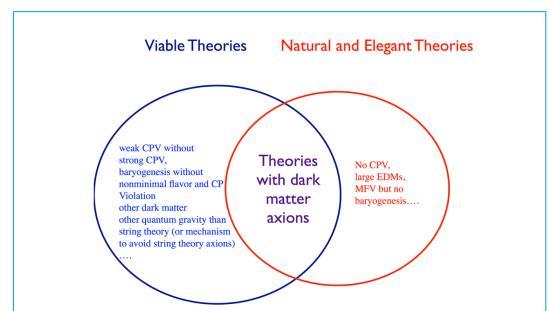
Experiment:

- Motivation: explore a well motivated axion parameter region (for example stellar evolutions) not accessible by other techniques.
- Approach:
 use experience gained at CAST
 (CERN) to optimize solar axion
 searches with dedicated magnets,
 X-ray optics and detectors.
- Timeline: prototype could be ready in 2023.
- Location: several options at DESY in Hamburg.



From babyIAXO to the full experiment

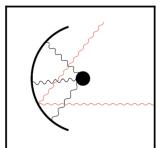
Free bore [m]	0.6	oth
Magnetic length [m]	10	ng
Field in bore [T]	2.5	coils
Stored energy [MJ]	27	sidered
Peak field [T]	4.1	15


- Presumably, the only option that hits available budget
- Thus, it has been selected for further design optimization...

Dark matter axions

Haloscopes

Ann Nelson, University of Washington



Principle

Dish antenna: dark matter axions might convert to photons at the surface of a magnetic mirror.

- The discontinuity of ε causes reflection.
- Such photons are emitted perpendicular to the surface.

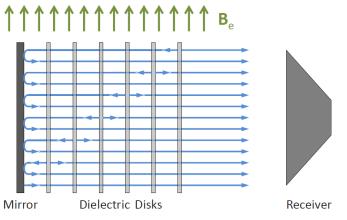
D. Horns et al, JCAP04(2013)016

power boost factor

The main challenge:

$$\frac{P}{A} = \beta^2 \frac{P_0}{A} = 2.2 \times 10^{-27} \frac{W}{m^2} \beta^2 \left(\frac{B_e}{10 \text{ T}}\right)^2 C_{a\gamma}^2$$

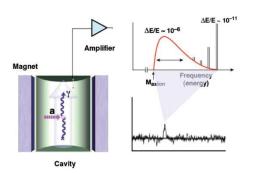
 Detector sensitivities about 10⁻²² W, so β² ≈ 10⁴-10⁵ required!



Principle

MADMAX: combines the dish antenna with a tunable resonating structure out of dielectric disks to boost the axion-photon conversion probability.

- Balance bandwidth and boost factor.
- Access dark matter mass range not reachable with techniques (microwave cavities).

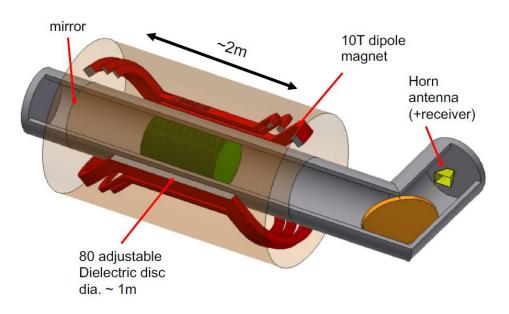

A. J. Millar et al., JCAP 061 (2017)

Most others:

Resonant amplification in microwave cavities

$$P_{a
ightarrow\gamma} \propto \left(B_0^2 V Q
ight) \left(g_\gamma^2 rac{
ho_{
m a}}{m_{
m a}}
ight)$$

Does not work for masses > 100µeV

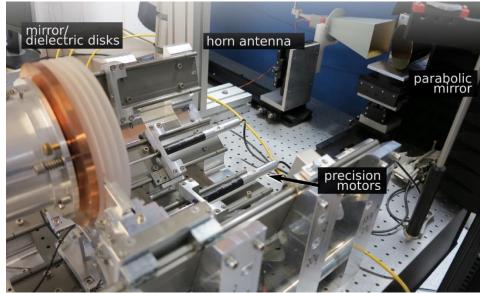


"Invisible" Axion

Concept

Critical item:

- Provide a large aperture strong dipole magnet to host the "booster" (dielectric disks).
- Magnet studies ongoing at Bilfinger-Noell and CEA Saclay.
- The magnet will be placed inside the iron yoke of the former H1 experiment at HERA.



R&D

More critical items:

- Understand and construct the "booster".
 - Up to 80 Sapphire or LaAlO₃ discs with A=1m² to be positioned with µm accuracy on 2 m.

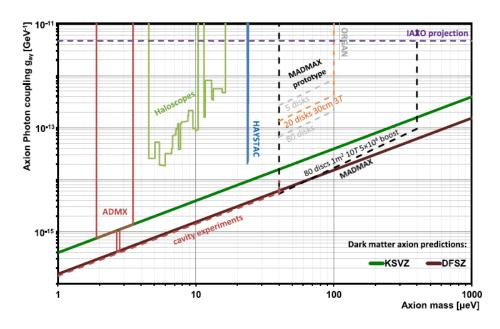
Test setup at MPI Munich

Status

Collaboration:

- 8 Institutes from 3 countries
- Formal collaboration founding 20 October 2017 at DESY.

Experiment:


- Motivation: look for well motivated axion dark matter (for example "SMASH") in a mass region not accessible by present techniques.
- Approach: install a tunable "booster" of 80 dielectric disks inside a 2 m long dipole magnet providing $B^2 \cdot A = 100 T^2 m^2$.
- Timeline: prototype could be ready in 2022.
- Location: next to ALPS II in HERA North, funding proposal for infrastructure approved by Helmholtz.

MADMAX reach

January 25, 2019

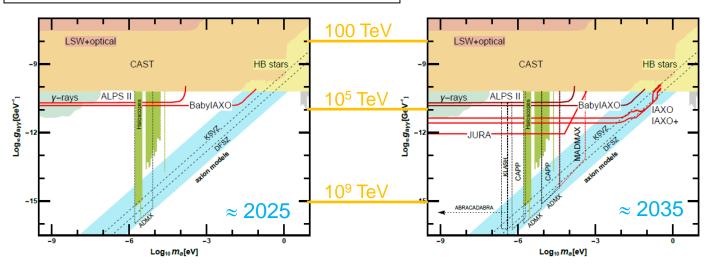
A new experimental approach to probe QCD axion dark matter in the mass range above $40 \,\mu eV$

The MADMAX collaboration:

- P. Brun, A. Caldwell L. Chevalier, G. Dvali P. Freire
- E. Garutti^c S. Heyminck^d J. Jochum^g S. Knirck^a M. Kramer^d C. Krieger^c T. Lasserre, ^h C. Lee^a X. Li^a A. Lindner^b
- B. Majorovits^a S. Martens^c M. Matysek^c A. Millar^{a,*} G. Raffelt^a
- J. Redondo^{e,a} O. Reimann^a A. Ringwald^b K. Saikawa^a
- J. Schaffran^b A. Schmidt^f J. Schütte-Engel^c F. Steffen^a
- C. Strandhagen^g G. Wieching^d

https://arxiv.org/abs/1901.07401

Context: an international axion strategy


Input for the update process of the European strategy on particle physics ESPP

A European Strategy Towards Finding Axions and Other WISPs

K. Desch¹, B. Döbrich², I. Irastorza³, J. Jaeckel⁴, A. Lindner⁵, B. Majorovits⁶, A. Ringwald⁵,

https://indico.cern.ch/event/765096/contributions/3295758/

Supported by 142 physicists

¹Physikalisches Institut, Uni. Bonn, Nußallee 12, D-53115 Bonn, Germany

²CERN, 1 Esplanade des Particules, CH-1211 Geneva 23, Switzerland

³Departamento de Fisica Teorica, Uni. de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, Spain

⁴Institut für Theoretische Physik, Uni. Heidelberg, Philosophenweg 16, D-69120 Heidelberg, Germany ⁵DESY, Notkestraße 85, D-22607 Hamburg, Germany

⁶Max-Planck-Institut für Physik, Föhringer Ring 6, D-80805 Munich, Germany

Advertising "PATRAS 2019"

https://axion-wimp.desy.de/

The 15th Patras Workshop on Axions, WIMPs and WISPs will be held in Freiburg (Germany) from June 3 to 7, 2019.

Deadlines:

- 15 April: abstract submission
- 30 April: early registration
- 31 May: registration

Summary (1)

Axion and axion-like particle physics

- is very well motivated by theory, cosmology and astro(particle)physics,
- complements accelerator based searches for BSM physics.

Experiments searching for axions and ALPs

- are small to moderate scale compared to accelerator based experiments,
- could be (nearly) done within one (a few) "PhD" generation(s),
- combine technical expertise from different communities,
- are always looking for new collaborators!

Summary (2)

Germany / DESY could become a leading partner in axion experiments:

Experiments in Germany taking data or being prepared:

- > IAXO / BabyIAXO to look for axions emitted by the sun,
- BRASS, CASPEr, FUNK, GNOME, HeXeniA, MADMAX searching for dark matter WISPs.

ALPS II (independent on astophysics/cosmology assumption)

- has started construction to be ready for data taking in late 2020,
- will be the first experiment probing the astrophysics hints on ALPs.

