

Phenomenology of Axion Dark Matter

Andreas Pargner

Theoretical Astroparticle Physics, Institute for Nuclear Physics (IKP)

Why do we need axions?

The strong CP problem

 $\mathcal{L}_{\rm QCD} \ni \frac{\alpha_S}{8\pi} \bar{\theta} G^{\mu\nu} \tilde{G}_{\mu\nu}$

Solution by Peccei and Quinn

- Static $\overline{\theta}$ is promoted to a dynamical variable.
- Goldstone of the spontaneously broken Peccei-Quinn symmetry.
- Potential via non-perturbative effects after QCD phase transition.

The strong CP problem and the axion

How is axion dark matter produced?

Dark matter via vacuum realignment

Dark matter via vacuum realignment

Interesting phenomenological consequences!

QCD axion: Formation of miniclusters

QCD axion as dark matter: $m_a \sim \ \mu \mathrm{eV}$

Overdensities can collapse already very early in small gravitationally bound objects. Miniclusters.

Important consequences for direct detection experiments.

What is the mass, size, and distribution of the miniclusters?

Evolution of the inhomogeneous field

Describing the dynamics with statistical methods and transfer functions.

Power spectrum of the density fluctuations

Theoretical Astroparticle Physics, IKP

Minicluster mass function

- Decoupling of nonlinear overdensities already in radiation dominated universe.
- Determine distribution of miniclusters.

Minicluster mass function

Collapse in virialized or coherent configuration?

 $\lambda_{\rm dB} \sim R_{\rm MC}$

Numerical simulation of scalar cloud collapse.

$$\begin{split} \mathrm{i}\partial_t \phi &= -\frac{\Delta \phi}{2m} + m \Phi_N \phi \\ \Delta \Phi_N &= 4\pi G m \phi^* \phi \end{split}$$

 $u = r\phi$

n

0.40

0.35

0.30

0.25

0.20

0.15

0.10

140

 $u = r\phi$

n

0.40

0.35

0.30

0.25

0.20

0.15

0.10

140

100

120

Andreas Pargner – Phenomenology of Axion Dark Matter

 $u = r\phi$

n

0.40

0.35

0.30

0.25

0.20

0.15

0.10

140

120

 $u = r\phi$

n

0.40

0.35

0.30

0.25

0.20

0.15

0.10

r

Conclusion and Outlook

- The axion is a well motivated dark matter candidate.
- Interesting phenomenlogical implications beyond the usual interactions with the Standard Model.
- QCD axion: formation of miniclusters. Understanding their distribution is important for dark matter searches.
- Ultralight ALPs: Minicluster fluctuations have impact on cosmological scales, observable in the CMB. Limits on ALP dark matter masses.

Conclusion and Outlook

- The axion is a well motivated dark matter candidate.
- Interesting phenomenlogical implications beyond the usual interactions with the Standard Model.
- QCD axion: formation of miniclusters. Understanding their distribution is important for dark matter searches.
- Ultralight ALPs: Minicluster fluctuations have impact on cosmological scales, observable in the CMB. Limits on ALP dark matter masses.

Thanks for your attention!

Back-Up.

