Neutrino Oscillation Anomalies and their Relation to Sterile Neutrinos 6th KSETA Plenary Workshop 2019, Durbach

Alvaro Hernandez-Cabezudo

Theoretical Astroparticle Physics, IKP

February 27, 2019

Neutrino Oscillations

2015 Nobel Prize Arthur B. McDonald, Takaaki Kajita For the discovery of neutrino oscillations, which shows that neutrinos have mass

New Physics and Sterile Neutrinos

- 3ν Oscillations and global analysis
- Short Baseline Anomalies and the status of their interpretation in terms of Sterile Neutrino Oscillations

Neutrino Oscillations

3ν Standard Oscillations

After EWSB: $\mathcal{L}_{CC} \propto U_{\alpha i} W^-_{\mu} \bar{\ell_{\alpha}} \gamma^{\mu} P_L \nu_i$ Lepton mixing matrix U, analogous to the CKM matrix.

 $\left|\nu_{\alpha}\right\rangle = U_{\alpha j}\left|\nu_{j}\right\rangle$

Propagation

$$|\nu_{\alpha}(t)\rangle = U_{\alpha j} e^{-iE_{j}t} |\nu_{j}(t)\rangle = U_{\alpha j} e^{-iE_{j}t} U_{\gamma j}^{*} |\nu_{\gamma}\rangle$$

 $\left|\nu_{j}\right\rangle = U_{\beta j}^{*} \left|\nu_{\beta}\right\rangle$

Oscillation Probability (in Vacuum)

$$P\nu_{\alpha} \rightarrow \nu_{\beta} = \left| \left\langle \nu_{\beta} \left| \nu_{\alpha}(t) \right\rangle \right|^{2} = \delta_{ab} - 4 \sum_{i > j} \operatorname{Re} \left(U_{aj} U_{bj}^{*} U_{ai}^{*} U_{bi} \right) \sin^{2} \left(\frac{\Delta m_{ij}^{2} L}{4E} \right) + 2 \sum_{i > j} \operatorname{Im} \left(U_{aj} U_{bj}^{*} U_{ai}^{*} U_{bi} \right) \sin \left(\frac{\Delta m_{ij}^{2} L}{2E} \right) + 2 \sum_{i > j} \operatorname{Im} \left(U_{aj} U_{bj}^{*} U_{ai}^{*} U_{bi} \right) \sin \left(\frac{\Delta m_{ij}^{2} L}{2E} \right) + 2 \sum_{i > j} \operatorname{Im} \left(U_{aj} U_{bj}^{*} U_{ai}^{*} U_{bi} \right) \sin \left(\frac{\Delta m_{ij}^{2} L}{2E} \right) + 2 \sum_{i > j} \operatorname{Im} \left(U_{aj} U_{bj}^{*} U_{ai}^{*} U_{bi} \right) \sin \left(\frac{\Delta m_{ij}^{2} L}{2E} \right) + 2 \sum_{i > j} \operatorname{Im} \left(U_{aj} U_{bj}^{*} U_{ai}^{*} U_{bi} \right) \sin \left(\frac{\Delta m_{ij}^{2} L}{2E} \right) + 2 \sum_{i > j} \operatorname{Im} \left(U_{aj} U_{bj}^{*} U_{ai}^{*} U_{bi} \right) \sin \left(\frac{\Delta m_{ij}^{2} L}{2E} \right) + 2 \sum_{i > j} \operatorname{Im} \left(U_{aj} U_{bj}^{*} U_{ai}^{*} U_{bi} \right) \sin \left(\frac{\Delta m_{ij}^{2} L}{2E} \right) + 2 \sum_{i > j} \operatorname{Im} \left(U_{aj} U_{bj}^{*} U_{ai}^{*} U_{bi} \right) \sin \left(\frac{\Delta m_{ij}^{2} L}{2E} \right) + 2 \sum_{i > j} \operatorname{Im} \left(U_{aj} U_{bj}^{*} U_{ai}^{*} U_{bi} \right) \sin \left(\frac{\Delta m_{ij}^{2} L}{2E} \right) + 2 \sum_{i > j} \operatorname{Im} \left(U_{aj} U_{bj}^{*} U_{ai}^{*} U_{bi} \right) + 2 \sum_{i > j} \operatorname{Im} \left(U_{aj} U_{bj}^{*} U_{ai}^{*} U_{bi} \right) + 2 \sum_{i > j} \operatorname{Im} \left(U_{aj} U_{bj}^{*} U_{ai}^{*} U_{bi} \right) + 2 \sum_{i > j} \operatorname{Im} \left(U_{aj} U_{bj}^{*} U_{ai}^{*} U_{bi} \right) + 2 \sum_{i > j} \operatorname{Im} \left(U_{aj} U_{bj}^{*} U_{ai}^{*} U_{bi} \right) + 2 \sum_{i > j} \operatorname{Im} \left(U_{aj} U_{bi}^{*} U_{bi} \right) + 2 \sum_{i > j} \operatorname{Im} \left(U_{aj} U_{bi}^{*} U_{bi} \right) + 2 \sum_{i > j} \operatorname{Im} \left(U_{aj} U_{bi}^{*} U_{bi} \right) + 2 \sum_{i > j} \operatorname{Im} \left(U_{aj} U_{bi} U_{bi} \right) + 2 \sum_{i > j} \operatorname{Im} \left(U_{aj} U_{bi} U_{bi} \right) + 2 \sum_{i > j} \operatorname{Im} \left(U_{aj} U_{bi} U_{bi} \right) + 2 \sum_{i > j} \operatorname{Im} \left(U_{aj} U_{bi} U_{bi} \right) + 2 \sum_{i > j} \operatorname{Im} \left(U_{aj} U_{bi} U_{bi} U_{bi} \right) + 2 \sum_{i > j} \operatorname{Im} \left(U_{aj} U_{bi} U_{$$

Neutrino oscillations in matter

CC effective potential

- Oscillation probability enhancement, MSW effect.
- intrinsic CP violation.

NC effective potential do not have any effect

Neutrino Oscillations

PMNS Matrix Parametrization

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = U \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} ; \quad \Delta m_{atm}^{2}, \ \Delta m_{sol}^{2} \& \quad U_{PMNS} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix}$$
$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{-i\alpha_{1}} & 0 \\ 0 & 0 & e^{-i\alpha_{2}} \end{pmatrix}$$

$$P_{\substack{\nu_{\alpha} \to \nu_{\beta}}}(E, L, \theta) \qquad \qquad \mathbf{6} \text{ Parameters: } \theta_{12}, \theta_{23}, \theta_{13} \delta_{CP}, \Delta m_{sol}^2 \ll \Delta m_{atm}^2.$$

Oscillation Regimes

$$\frac{\Delta m^2 E}{4L} \simeq 1.27 \Delta m_{ij}^2 ({\rm eV}^2) \frac{L({\rm Km})}{E({\rm GeV})}$$

$$\Delta m_{
m sol}^2 \sim 10^{-4} {
m eV}^2 \ \Rightarrow \ L/E \sim 10^4 {
m Km/GeV}$$

Reactors: $E \sim {
m MeV}$, $L \sim 1 {
m Km}$ Daya Bay

 $L\sim 100 {
m Km}$ KamLAND

P.Vogel et.al. [arXiv:1503.01059]

NuFIT 4.0 (2018), www.nu-fit.org I. Esteban, C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni, T. Schwetz

 $\chi^2(\theta_{12},\,\theta_{23},\,\theta_{13},\,\delta_{CP},\,\Delta m^2_{\rm sol},\,\Delta m^2_{\rm atm}) =$

NuFIT 4.0 (2018), www.nu-fit.org I. Esteban, C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni, T. Schwetz

$$P_{\text{KLAND}} = \sin^4 \theta_{13} + \cos^4 \theta_{13} \left(1 - \frac{1}{2}\sin^2(2\theta_{12})\sin^2\frac{\Delta_{\text{sol}}L}{4E}\right)$$

$$\begin{split} \chi^2(\theta_{12},\theta_{23},\theta_{13},\delta_{CP},\Delta m^2_{\rm sol},\Delta m^2_{\rm atm}) = \\ \chi^2_{\rm sol+KLAND}(\theta_{12},\Delta m^2_{\rm sol},\theta_{13}) \end{split}$$

NuFIT 4.0 (2018), www.nu-fit.org I. Esteban, C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni, T. Schwetz

$$P_{\text{KLAND}} = \sin^4 \theta_{13} + \cos^4 \theta_{13} \left(1 - \frac{1}{2} \sin^2(2\theta_{12}) \sin^2 \frac{\Delta_{\text{sol}}L}{4E} \right)$$
$$P_{\text{reactor}} = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \frac{\Delta_{\text{sol}}L}{4E} - \sin^2 2\theta_{13} \left(\cos^2 \theta_{12} \sin^2 \frac{\Delta_{13}L}{4E} + \sin^2 \theta_{12} \sin^2 \frac{\Delta_{32}L}{4E} \right)$$

$$\chi^{2}(\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}, \Delta m_{sol}^{2}, \Delta m_{atm}^{2}) = \chi^{2}_{sol+KLAND}(\theta_{12}, \Delta m_{sol}^{2}, \theta_{13})$$
$$- \chi^{2}_{reactor}(\theta_{12}, \Delta m_{sol}^{2}, \theta_{13}, \Delta m_{atm}^{2})$$

NuFIT 4.0 (2018), www.nu-fit.org I. Esteban, C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni, T. Schwetz

$$P_{\text{KLAND}} = \sin^4 \theta_{13} + \cos^4 \theta_{13} \left(1 - \frac{1}{2} \sin^2(2\theta_{12}) \sin^2 \frac{\Delta_{\text{sol}}L}{4E} \right)$$
$$P_{\text{reactor}} = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \frac{\Delta_{\text{sol}}L}{4E} - \sin^2 2\theta_{13} \left(\cos^2 \theta_{12} \sin^2 \frac{\Delta_{13}L}{4E} + \sin^2 \theta_{12} \sin^2 \frac{\Delta_{32}L}{4E} \right)$$

$$\begin{split} \chi^2(\theta_{12},\theta_{23},\theta_{13},\delta_{CP},\Delta m^2_{\rm sol},\Delta m^2_{\rm atm}) &= \\ \chi^2_{\rm sol+KLAND}(\theta_{12},\Delta m^2_{\rm sol},\theta_{13}) \\ \cdot \chi^2_{\rm reactor}(\theta_{12},\Delta m^2_{\rm sol},\theta_{13},\Delta m^2_{\rm atm}) \\ \chi^2_{\rm reactor}(\theta_{12},\Delta m^2_{\rm sol},\theta_{13},\Delta m^2_{\rm atm}) \end{split}$$

+
$$\chi^2_{\text{LBL}}(\theta_{12}, \Delta m^2_{\text{sol}}, \theta_{13}, \Delta m^2_{\text{atm}}, \theta_{23}, \delta_{CP})$$

NuFIT 4.0 (2018), www.nu-fit.org I. Esteban, C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni, T. Schwetz

$$P_{\text{KLAND}} = \sin^4 \theta_{13} + \cos^4 \theta_{13} \left(1 - \frac{1}{2} \sin^2(2\theta_{12}) \sin^2 \frac{\Delta_{\text{sol}}L}{4E} \right)$$
$$P_{\text{reactor}} = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \frac{\Delta_{\text{sol}}L}{4E} - \sin^2 2\theta_{13} \left(\cos^2 \theta_{12} \sin^2 \frac{\Delta_{13}L}{4E} + \sin^2 \theta_{12} \sin^2 \frac{\Delta_{32}L}{4E} \right)$$

$$\begin{split} \chi^{2}(\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}, \Delta m^{2}_{sol}, \Delta m^{2}_{atm}) &= \\ \chi^{2}_{sol+KLAND}(\theta_{12}, \Delta m^{2}_{sol}, \theta_{13}) \\ &+ \chi^{2}_{reactor}(\theta_{12}, \Delta m^{2}_{sol}, \theta_{13}, \Delta m^{2}_{atm}) \\ &+ \chi^{2}_{LBL}(\theta_{12}, \Delta m^{2}_{sol}, \theta_{13}, \Delta m^{2}_{atm}, \theta_{23}, \delta_{CP}) \\ &+ \chi^{2}_{atm}(\theta_{12}, \Delta m^{2}_{sol}, \theta_{13}, \Delta m^{2}_{atm}, \theta_{23}, \delta_{CP}) \end{split}$$

NuFIT 4.0 (2018), www.nu-fit.org I. Esteban, C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni, T. Schwetz

$$P_{\text{KLAND}} = \sin^4 \theta_{13} + \cos^4 \theta_{13} \left(1 - \frac{1}{2} \sin^2(2\theta_{12}) \sin^2 \frac{\Delta_{\text{sol}}L}{4E}\right)$$
$$P_{\text{reactor}} = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \frac{\Delta_{\text{sol}}L}{4E} - \sin^2 2\theta_{13} \left(\cos^2 \theta_{12} \sin^2 \frac{\Delta_{31}L}{4E} + \sin^2 \theta_{12} \sin^2 \frac{\Delta_{32}L}{4E}\right)$$

Combined analysis:

- $$\begin{split} \chi^2(\theta_{12},\theta_{23},\theta_{13},\delta_{CP},\Delta m^2_{\mathrm{sol}},\Delta m^2_{\mathrm{atm}}) = \\ \chi^2_{\mathrm{sol+KLAND}}(\theta_{12},\Delta m^2_{\mathrm{sol}},\theta_{13}) \end{split}$$
- + $\chi^2_{\text{reactor}}(\theta_{12}, \Delta m^2_{\text{sol}}, \theta_{13}, \Delta m^2_{\text{atm}})$
- $+ \quad \chi^2_{\rm LBL}(\theta_{12},\Delta m^2_{\rm sol},\theta_{13},\Delta m^2_{\rm atm},\theta_{23},\delta_{CP})$
- $+ \quad \chi^2_{\rm atm}(\theta_{12},\Delta m^2_{\rm sol},\theta_{13},\Delta m^2_{\rm atm},\theta_{23},\delta_{CP})$

NuFIT 4.0 (2018), www.nu-fit.org I. Esteban, C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni, T. Schwetz

$$P_{\text{KLAND}} = \sin^4 \theta_{13} + \cos^4 \theta_{13} \left(1 - \frac{1}{2} \sin^2(2\theta_{12}) \sin^2 \frac{\Delta_{\text{sol}}L}{4E}\right)$$
$$P_{\text{reactor}} = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \frac{\Delta_{\text{sol}}L}{4E} - \sin^2 2\theta_{13} \left(\cos^2 \theta_{12} \sin^2 \frac{\Delta_{31}L}{4E} + \sin^2 \theta_{12} \sin^2 \frac{\Delta_{32}L}{4E}\right)$$

Combined analysis:

- $$\begin{split} \chi^2(\theta_{12},\,\theta_{23},\,\theta_{13},\,\delta_{CP},\,\Delta m^2_{\mathrm{sol}},\,\Delta m^2_{\mathrm{atm}}) = \\ \chi^2_{\mathrm{sol+KLAND}}(\theta_{12},\,\Delta m^2_{\mathrm{sol}},\,\theta_{13}) \end{split}$$
- + $\chi^2_{
 m reactor}(\theta_{12},\Delta m^2_{
 m sol},\theta_{13},\Delta m^2_{
 m atm})$
- + $\chi^2_{\text{LBL}}(\theta_{12}, \Delta m^2_{\text{sol}}, \theta_{13}, \Delta m^2_{\text{atm}}, \theta_{23}, \delta_{CP})$
- $+ \quad \chi^2_{\rm atm}(\theta_{12},\Delta m^2_{\rm sol},\theta_{13},\Delta m^2_{\rm atm},\theta_{23},\delta_{CP})$

www.nu-fit.org

Neutrino Oscillations, Reactor Neutrinos

Predictions

$$N_{i}^{d} = \mathcal{N} \sum_{r} \sum_{iso} \frac{\epsilon^{d}}{L_{rd}^{2}} \int_{E_{i}^{rec}}^{E_{i+1}^{rec}} dE^{rec} \int_{0}^{\infty} dE_{\nu} \sigma(E_{\nu}) f^{iso} \phi^{iso}(E_{\nu}) P_{\bar{\nu}_{e} \to \bar{\nu}_{e}}^{rd}(E_{\nu}) R(E^{rec}, E_{\nu})$$

Analysis, Pull approach

$$\chi^2(\boldsymbol{\theta},\boldsymbol{\eta}) = \sum_{i,j} \frac{(Obs_i - Pred_i(\boldsymbol{\theta},\boldsymbol{\eta}))^2}{(\sigma_i^{\text{stat}})^2} + \eta_k V_{kl}^{-1} \eta_l$$

 $\eta:$ pull parameters accounting for the systematics. We include as much information from the collaborations as it is given.

6 Parameters: θ_{12} , θ_{23} , $\theta_{13} \& \delta_{CP}$ $\Delta m_{sol}^2 \ll \Delta m_{atm}^2$ (Mass ordering) $m_1 < m_2 < m_3$ $m_3 < m_1 < m_2$

3v Oscillation Framework is very well tested

However there are experimental data that can not be accommodated in this framework

\Rightarrow Short Baseline Anomalies

- Sterile Neutrino Oscillations
- Reactor Anti-neutrino Anomaly
- LSND and MiniBooNE Anomaly
- Appearance vs Disappearance Tension

$3+1\nu$ framework

$$\begin{split} & P_{\overline{\nu}_{e} \to \overline{\nu}_{e}} = 1 - 4 \sum_{i=1}^{3} \sum_{j>i}^{4} |U_{ej}|^{2} |U_{ej}|^{2} \sin^{2} \left(\Delta m_{ij}^{2} \frac{L}{4E} \right) \\ & P_{\overline{\nu}_{e} \to \overline{\nu}_{e}} \sum_{\mathrm{SBL}}^{\sim} 1 - \sin^{2} 2\theta_{14} \sin^{2} \left(\Delta m_{41}^{2} \frac{L}{4E} \right) \end{split}$$

M.Dentler et.al. [arXiv:1803.10661]

M.Dentler, A.Hernandez-Cabezudo, J.Kopp, P.A.N.Machado, M.Maltoni, I.Martinez-Soler, T.Schwetz

SBL Anomalies and Sterile Neutrino Oscillations

Short Baseline (SBL) Experiments measure in the $L/E \sim 1m/MeV$ regime. They are not sensitive to the 3ν standard oscillations (Δm_{atm}^2 and Δm_{sol}^2).

- 1 LNSD & MiniBooNE $\stackrel{(-)}{\nu_{\mu}} \rightarrow \stackrel{(-)}{\nu_{e}}$
- 2 Gallium $\nu_e \rightarrow \nu_e$
- 3 Reactor $\bar{\nu_e} \rightarrow \bar{\nu_e}$

A.A. Aguilar-Arevalo et.al. [arXiv:1805.12028]

F.P. An et.al. [arXiv:1607.05378]

eV Sterile Neutrino

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} & U_{\mu4} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} & U_{\tau4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix} ; \quad \Delta m_{new}^2 \simeq 1 eV^2$$
$$P_{\nu\alpha \to \nu\beta}^{SBL} = \left| \delta_{\alpha\beta} - \sin^2 2\theta_{\alpha\beta} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E} \right) \right|$$

Total measured events vs predicted events

235
 U, 239 Pu, 238 U & 241 Pu $\rightarrow \overline{\nu}_{e}$ ($\sim {\rm MeV}) {\rm Flux}.$

Reactor experiments measured a deficit $\bar{\nu_e}$ events with respect to the theoretical predictions (Huber-Muller)

Sterile Neutrino Oscillations

$$\begin{split} P_{\nu \bar{\ell}_{e} \rightarrow \nu \bar{\nu}_{e}} &= 1 - \sin^{2} 2\theta_{14} \sin^{2} \left(\frac{\Delta m_{\mathrm{new}}^{2} L}{4E} \right) \\ \mathrm{averaged out} : P_{\nu \bar{\ell}_{e} \rightarrow \nu \bar{\ell}_{e}} &= 1 - \frac{1}{2} \sin^{2} 2\theta_{14} \end{split}$$

K. N. Abazajian et.al. [arXiv:1204.5379]

Flux Mismodelling

Global fit C.Giunti et.al. [arXiv: 1901.01807] of the flux evolution and all-time integrated $\bar{\nu}_e$ flux measurement do not favour the flux mismodeling hypothesis over the hybrid models.

A. Hernandez-Cabezudo (IKP)

Recent New Data Analysis independent of flux predictions

Y.J. Ko et.al. [arXiv: 1610.05134]

I Alekseev et.al. [arXiv: 1804.04046]

PROSPECT $(L \sim 7 - 13m)$ STEREO $(L \sim 10m)$ NEUTRINO 4* $(L \sim 6 - 12m)$

Based on ratios of measured spectra

I.Alekseev et.al. [arXiv: 1804.04046]

In our global analysis we perform a **Flux Free Analysis**, fitting the oscillation parameters as well as the normalizations of the flux predictions to the data.

M.Dentler et.al. [arXiv:1803.10661]

Y.J. Ko et.al. [arXiv: 1610.05134]

Reactor Global Analysis

M.Dentler et.al. [arXiv:1803.10661]

Reactor Global Analysis

M.Dentler et.al. [arXiv:1803.10661]

Analysis	Δm^2_{41} [eV ²]	$ U_{e4}^2 $	$\chi^2_{ m min}/ m dof$	$\Delta\chi^2$ (no-osc)	significance
DANSS+NEOS	1.3	0.00964	74.4/(84 - 2)	13.6	3.3σ
all reactor (flux-free)	1.3	0.00887	185.8/(233 - 5)	11.5	2.9σ
all reactor (flux-fixed)	1.3	0.00964	196.0/(233 - 3)	15.5	3.5σ

Reactor Global Analysis

M.Dentler et.al. [arXiv:1803.10661]

Analysis	$\Delta m_{41}^2 [\mathrm{eV}^2]$	$ U_{e4}^{2} $	$\chi^2_{ m min}/ m dof$	$\Delta\chi^2$ (no-osc)	significance
DANSS+NEOS	1.3	0.00964	74.4/(84-2)	13.6	3.3σ
all reactor (flux-free)	1.3	0.00887	185.8/(233 - 5)	11.5	2.9σ
all reactor (flux-fixed)	1.3	0.00964	196.0/(233 - 3)	15.5	3.5σ

Reactor anomaly confirmed by ratios of measured spectra independently of flux predictions

A. Hernandez-Cabezudo (IKP)

Neutrino Oscillation Anomalies and their Relation to Sterile Neutrinos

Reactor Global Analysis

M.Dentler et.al. [arXiv:1803.10661]

Analysis	$\Delta m_{41}^2 [\mathrm{eV}^2]$	$ U_{e4}^{2} $	$\chi^2_{ m min}/ m dof$	$\Delta\chi^2$ (no-osc)	significance
DANSS+NEOS	1.3	0.00964	74.4/(84-2)	13.6	3.3σ
all reactor (flux-free)	1.3	0.00887	185.8/(233 - 5)	11.5	2.9σ
all reactor (flux-fixed)	1.3	0.00964	196.0/(233 - 3)	15.5	3.5σ

Reactor anomaly confirmed by ratios of measured spectra independently of flux predictions

A. Hernandez-Cabezudo (IKP)

Neutrino Oscillation Anomalies and their Relation to Sterile Neutrinos

Reactor Global Analysis

M.Dentler et.al. [arXiv:1803.10661]

Analysis	$\Delta m_{41}^2 [\mathrm{eV}^2]$	$ U_{e4}^{2} $	$\chi^2_{ m min}/ m dof$	$\Delta\chi^2$ (no-osc)	significance
DANSS+NEOS	1.3	0.00964	74.4/(84-2)	13.6	3.3σ
all reactor (flux-free)	1.3	0.00887	185.8/(233 - 5)	11.5	2.9σ
all reactor (flux-fixed)	1.3	0.00964	196.0/(233 - 3)	15.5	3.5σ

Reactor anomaly confirmed by ratios of measured spectra independently of flux predictions

A. Hernandez-Cabezudo (IKP)

Neutrino Oscillation Anomalies and their Relation to Sterile Neutrinos

Ractor Anti-neutrino Anomaly and KATRIN $\frac{d\Gamma}{dE} = \Theta \left(E_0 - E - m_{\beta} \right) \left(1 - |U_{e4}|^2 \right) \frac{d\Gamma}{dE} \left(m_{\beta} \right)$

$$\frac{\Gamma}{E} = \Theta \left(E_0 - E - m_\beta \right) \left(1 - |U_{e4}|^2 \right) \frac{d\Gamma}{dE} \left(m_\beta \right) + \Theta \left(E_0 - E - m_4 \right) |U_{e4}|^2 \frac{d\Gamma}{dE} \left(m_4 \right)$$

Marx Krozeczek, Master Thesis: eV- & KeV-sterile neutrino studies with KATRIN

$\stackrel{(\overline{\nu}_{e})}{\overline{\nu}_{e}} \rightarrow \stackrel{(\overline{\nu}_{e})}{\overline{\nu}_{e}}$ Combined Analysis

Global $\stackrel{(-)}{\nu_e}$ Disappearance Analysis

M.Dentler et.al. [arXiv:1803.10661]

Analysis	$\Delta m_{41}^2 [\mathrm{eV}^2]$	$ U_{e4}^{2} $	$\chi^2_{\sf min}/{\sf dof}$	$\Delta\chi^2$ (no-osc)	significance
$\stackrel{(-)}{ u_e}$ disap. (flux free)	1.3	0.00901	542.9/(594 - 8)	13.4	3.2σ

LNSD and MiniBooNE Anomalies, $\stackrel{(-)}{ u_{\mu}} ightarrow \stackrel{(-)}{ u_{e}}$

K. N. Abazajian et.al. [arXiv:1204.5379]

Oscillation regime $L/E \sim 0.15-2.3~{\rm m/MeV}$

[arXiv:1805.12028]

C.Athanassopoulos et.al. [arXiv:nucl-es/9605002]

[arXiv:1204.5379]

$(\overline{\nu_{\mu}}) \rightarrow (\overline{\nu_{e}})$ Appearance

LSND & MiniBooNE Anomalies

Global ${\stackrel{(-)}{\nu}}_{\mu} \rightarrow {\stackrel{(-)}{\nu}}_{e}$ Analysis

(Updated data till Spring 2018)

 $\sin^2 2\theta_{\mu e} \propto |U_{\mu 4}|^2 |U_{e4}|^2$

$\stackrel{(\overline{\nu})}{\nu_{\mu}} \rightarrow \stackrel{(\overline{\nu})}{\nu_{e}}$ Appearance

LSND & MiniBooNE Anomalies

Global ${\stackrel{(-)}{\nu}}_{\mu} \rightarrow {\stackrel{(-)}{\nu}}_e$ Analysis

(Updated data till Spring 2018)

$$\begin{split} P_{\stackrel{(-)}{\nu_{e}}\rightarrow\stackrel{(-)}{\nu_{e}}} &= 1 - 4|U_{e4}|^{2}(1 - |U_{e4}|)^{2}\sin^{2}\left(\frac{\Delta m_{41}^{2}E}{4L}\right) \\ P_{\stackrel{(-)}{\nu_{\mu}}\rightarrow\stackrel{(-)}{\nu_{\mu}}} &= 1 - 4|U_{\mu4}|^{2}(1 - |U_{\mu4}|)^{2}\sin^{2}\left(\frac{\Delta m_{41}^{2}E}{4L}\right) \\ P_{\stackrel{(-)}{\nu_{\mu}}\rightarrow\stackrel{(-)}{\nu_{e}}} &= 4|U_{e4}|^{2}|U_{\mu4}|^{2}\sin^{2}\left(\frac{\Delta m_{41}^{2}E}{4L}\right) \end{split}$$

$$\sin^2 2\theta_{e\mu} \simeq \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu}$$

$$\sin^2 2\theta_{\mu e} \propto |U_{\mu 4}|^2 |U_{e 4}|^2$$

Global $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}$ Analysis \Rightarrow

Global
$$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}$$
 Analysis \Rightarrow

M.Dentler et.al. [arXiv:1803.10661]

$$(\overline{
u}_{\mu}) \rightarrow (\overline{
u}_{e})$$
 vs $(\overline{
u}_{\mu})/(\overline{
u}_{e})$ Tension

Global
$${\stackrel{(-)}{
u}}_{\mu}
ightarrow {\stackrel{(-)}{
u}}_{\mu}$$
 Analysis \Rightarrow

M.Dentler et.al. [arXiv:1803.10661]

$$(\vec{\nu}_{\mu}) \rightarrow (\vec{\nu}_{e})$$
 vs $(\vec{\nu}_{\mu})/(\vec{\nu}_{e})$ Tension

Parameter Goodness of Fit Test

Analysis	$\Delta \chi^2_{\rm app-disapp}$	p-value	significance
Global	29.6	$3.7 imes 10^{-7}$	5.1σ
w/o Reactors	20.3	3.9×10^{-5}	4.1σ

The tension is independent of the Reactor Anomaly

Global
$${\stackrel{(-)}{
u}}_{\mu}
ightarrow {\stackrel{(-)}{
u}}_{\mu}$$
 Analysis \Rightarrow

M.Dentler et.al. [arXiv:1803.10661]

$$(\vec{\nu}_{\mu}) \rightarrow (\vec{\nu}_{e})$$
 vs $(\vec{\nu}_{\mu})/(\vec{\nu}_{e})$ Tension

Analysis	χ^2_{PG}/dof	PG
Global	29.6/2	3.71×10^{-7}
Removing anomalous da	ata sets	
w/o LSND	12.9/2	1.6×10^{-3}
w/o MiniBooNE	24.4/2	5.2×10^{-6}
w/o reactors	20.3/2	3.8×10^{-5}
w/o gallium	33.9/2	4.4×10^{-8}
Removing constraints		_
w/o IceCube	29.4/2	4.2×10^{-7}
w/o MINOS(+)	24.5/2	4.7×10^{-6}
w/o MB disapp	28.7/2	6.0×10^{-7}
w/o CDHS	28.2/2	7.5×10^{-7}

The tension is independent of any particular experiment

- 3ν Oscillations unknown parameters: δ_{CP} , mass ordering, θ_{23} octant.
- 3ν Oscillations are a very well tested framework. However there are some anomalies.
- Reactor Anti-neutrino anomaly is compatible with new data, independent of flux predictions, at the level of $\sim 3\sigma$: $|U_{e4}|^2 \sim 0.01$ and $\Delta m_{\rm new}^2 \sim 1.3 {\rm eV}^2$.
- $\tilde{\nu_{\mu}} \rightarrow \tilde{\nu_{e}}$ Appearance data (MiniBooNE and LSND) is in strong tension with the Disappearance data ($\tilde{\nu_{\mu}} \rightarrow \tilde{\nu_{\mu}}$ bounds), independently of the reactor data.
- MiniBooNE and LSND data should not be explained in terms of sterile neutrino oscillations.