

Scintillation Detectors of AugerPrime Event Reconstruction and Data Analysis of First Prototypes

Alvaro Taboada Institute for Nuclear Physics (IKP)

KSETA Plenary Workshop Durbach, 27 February 2019

Ultra-high-energy cosmic rays

- What are the **sources**?
- How do they propagate?
- What is their mass composition on Earth?

Spectrum of cosmic rays

Sources of UHECRs ?

Propagation of cosmic rays

Energy loss through inelastic scattering on CMB

Propagation of cosmic rays

Magnetic deflection

Energy spectrum

р

7

Possible composition scenarios

Reason for the flux suppression at highest energies?

Rigidity dependent scenario

(tired sources, maximum acceleration scales with charge)

Photo-disintegration scenario

The Pierre Auger Observatory

Location:Malargüe, Mendoza (Argentina)Area:3000 km²Height:1450 m (860 g/cm²)Energy Threshold:1017.5 eV

Fluorescence detector (FD) 27 telescopes, 15% duty cycle

Surface Detector (SD) 1660 water-Cherenkov detectors 100% duty cycle

Shower profile

Composition Fits to X_{max}

Monte-Carlo distributions fitted to data

Energy evolution of composition

Transition energy ~10¹⁸ eV

Motivations for the Upgrade

- mass composition at E > 10¹⁹ eV
- proton fraction at highest energies
- hadronic interaction models

increase composition sensitivity with Surface Detector (100% duty cycle)!

AugerPrime Upgrade

Scintillator Surface Detector (SSD) on top of each of the existing Water-Cherenkov Detectors

Main objective

Reconstruct mass of primary cosmic ray with 100% duty cycle

(AugerPrime design report 1604.03637)

Further upgrades:

- Electronics Upgrade & Dynamic Range:
 - Higher sampling frequency (120 Mhz) and enhanced amplitude resolution (2 more bits)
 - Additional small PMT to WCD \rightarrow increase dynamic range
- Increase of FD duty cycle (up to 30%)
- Underground Muon Detector (UMD)
- Radio upgrade

Different response to shower particles

Scintillator Surface Detector (SSD)

- 3.8 m² scintillator detector on top of each WCD
- 48 scintillator bars coupled with WLS fibers guiding scintillation photons to a PMT
- Aluminum housing

Engineering Array

- 12 upgraded stations (new electronics & SSD) deployed in the Engineering Array (EA)
- Data acquisition started October 2016
- Currently deployed @ EA: 4 stations in the SD-750 m array 8 stations in the SD-1500 m array

Performance of EA detectors

- Observed MIP modulation could be related to seasonal variation
- Computed fraction of well-calibrated WCD of about ~98%
 - this fraction gets reduced for SSDs ~85%
- In general: good performance of the upgraded detectors

Reconstruction w/ Upgraded Detectors

Lateral Distribution Function (LDF)

$$S(r) = S_{1000} \left(\frac{r}{1000}\right)^{\beta} \left(\frac{r+700}{1700}\right)^{\gamma} E_{\text{rec}} = f(S_{1000}, \theta)$$

Reconstruction with Upgraded Detectors implemented in

simulation & reconstruction framework of the Pierre Auger Collaboration

Analysis from first prototypes

- Global LDF: each reconstructed signal is normalized by reconstructed energy
 - Slightly steeper LDF measured with SSD is visible
 - Quality cuts needed to improve analysis
- Good agreement between signals from old and upgraded electronics

Signal variance for the SSD

Making use of simulations to parametrize the variance of SSD signals

NextParameterization of the slope parameters β and γ of theLateral Distribution Function

Summary

UHECRs

- Open questions regarding sources, acceleration mechanisms and propagation
- We need mass!

AugerPrime

- Scintillator detectors with complementary response to EAS particles
- Analysis from first prototypes look promising

Future work

- Deployment of SSDs taking place
 → more data coming soon
- Ongoing reconstruction with scintillators
 - \rightarrow mass discrimination

backup

Calibration of the SD station

- atmospheric background flux ~1000 particles m⁻² s⁻¹
- histogram of recorded signals used for calibration
- signals expressed in units of:
 - VEM (Vertical Equivalent Muon) for WCD signals
 - MIP (Minimum Ionizing Particle) for SSD signals

