Vts with simple BDT Nov 28, 2024

Xunwu Zuo

.

Previous results

xunwu.zuo@cern.ch

Final selections

dilep cat

- missing energy > 80 GeV
- s-jet candidate energy > 45 GeV
- b-jet candidate energy > 25 GeV
- b-jet b-score > 0.9

semilep_cs cat

- missing energy > 30 GeV
- Can reconstruct 1 $t \to W(cs)b \text{ or } t \to W(cs)s$ decay
 - c-score and s-score > 0.5
 - $60 < m_W^{cs} < 80 \text{ GeV}$
 - $140 < m_{top}^{bcs/scs} < 175 \text{ GeV}$

xunwu.zuo@cern.ch

semilep_ud cat

- missing energy > 30 GeV
- Can reconstruct 1 $t \rightarrow W(ud)b$
- or $t \to W(ud)s$ decay
- s-jet candidate energy > 60 GeV •
- s-jet candidate energy > 45 GeV
- b-jet b-score > 0.9

dihad cat

- missing energy < 20 GeV
- s-jet candidate energy > 60 GeV
- b-jet candidate energy > 40 GeV
- b-jet b-score > 0.9
- Can reconstruct 2 top candidates

Expected precision

- Preliminary fit with HiggsCombine
 - Very basic datacards, no uncertainty included
 - For significance,

combine -M Significance datacard.txt -t -1 —expectedSignal=1

• For signal strength,

text2workspace datacard.txt -o ws.root

combine -M FitDiagnostics -t -1 —expectedSignal=1 ws.root

category	dilep	semilep_cs	semilep_ud	dihad	combined
significance	5.83	1.13	4.78	1.49	7.77
precision	+29%/-25%	+97%/-88%	+42%/-33%	+177%/-99%	+22%/-20%

xunwu.zuo@cern.ch

Event selection efficiency

xunwu.zuo@cern.ch

Signal event efficiency

- 1 jet with s-score > 0.5, N(s-jet) - N(c-jet) = 1
- Final selection: given in slide 3

	sig mode	dilep	${\it semilep_light}$	$semilep_heavy$	dihad
Expected yield		644.4	1337.6	1337.6	2760.3
Total raw events		3862800	7459200	7792200	15051600
categories					
dilep	base	$1.57 imes 10^{-1}$	0.0	0.0	0.0
	final	$8.98 imes10^{-2}$	0.0	0.0	0.0
${f semilep_light}$	base	$1.86 imes10^{-3}$	$1.56 imes10^{-1}$	1.51×10^{-2}	$3.59 imes10^{-6}$
	final	$2.59 imes10^{-7}$	$2.01 imes10^{-2}$	$2.21 imes 10^{-4}$	0.0
${f semilep_heavy}$	\mathbf{base}	$1.50 imes10^{-4}$	$1.85 imes10^{-3}$	$6.87 imes 10^{-2}$	$5.39 imes10^{-6}$
	final	1.73×10^{-5}	$9.92 imes 10^{-4}$	4.61×10^{-2}	0.0
dihad	base	$2.88 imes10^{-6}$	$2.75 imes10^{-3}$	$1.43 imes 10^{-3}$	$1.08 imes 10^{-1}$
	final	0.0	0.0	0.0	4.61×10^{-3}

xunwu.zuo@cern.ch

Baseline selection: correct number of leptons and jets, exactly 1 jet with b-score > 0.5, at least

bkg event efficiency

- 1 jet with s-score > 0.5, N(s-jet) - N(c-jet) = 1
- Final selection: given in slide 3

bkg mode	dilep	$\mathbf{semilep}$	dihad	WW	ZZ	\mathbf{ZH}
	0.201×10^{6}	0.836×10^{6}	$0.863 imes 10^6$	26791250	1607000	79262.93103
	6400000	12800000	6400000	11754213	11470944	9800000
base	$2.68 imes10^{-3}$	$3.52 imes 10^{-6}$	0	1.70×10^{-6}	2.96 imes-4	$1.11 \times ^{-3}$
final	$4.70 imes 10^{-4}$	5.47×10^{-7}	0.0	$8.51 imes 10^{-8}$	$1.92 imes 10^{-6}$	$1.32 imes 10^{-5}$
base	$1.10 imes10^{-3}$	$5.03 imes10^{-3}$	$1.13 imes10^{-5}$	$1.59 imes10^{-5}$	$3.34 imes10^{-5}$	$2.82 imes10^{-4}$
final	0.00	$3.12 imes 10^{-5}$	0.00	0.00	0.00	$1.02 imes 10^{-7}$
base	$2.20 imes10^{-4}$	1.88×10^{-3}	4.22×10^{-6}	$4.85 imes 10^{-6}$	$1.39 imes 10^{-5}$	$7.37 imes10^{-5}$
final	$1.28 imes 10^{-5}$	$5.79 imes10^{-4}$	$4.69 imes 10^{-7}$	0.00	$7.85 imes 10^{-7}$	7.04×10^{-6}
base	$4.38 imes10^{-6}$	9.51×10^{-4}	1.04×10^{-2}	1.00×10^{-4}	$1.26 imes 10^{-4}$	$1.03 imes 10^{-3}$
final	0.00	0.00	$6.02 imes10^{-5}$	0.00	$2.62 imes10^{-7}$	$1.02 imes10^{-7}$
	bkg mode base final base final base final base final	bkg modedilep 0.201×10^6 6400000 base 2.68×10^{-3} final 4.70×10^{-4} base 1.10×10^{-3} final 0.00 base 2.20×10^{-4} final 1.28×10^{-5} base 4.38×10^{-6} final 0.00	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

xunwu.zuo@cern.ch

Baseline selection: correct number of leptons and jets, exactly 1 jet with b-score > 0.5, at least

03

A few things to improve

- Optimize config for jet clustering
- Proper full reconstruction of hadronic top decays
- Use an MVA discriminator rather than s-tag score for signal extraction
 - especially in semilep_heavy category

BDT training

- For signal extraction
 - Hopefully also integrate information of hadronic top decay
 - Currently using 200 trees, depth of 3. Bigger BDTs lead to overtraining
 - Turned out not enough to "figure out" hadronic top decay combinatorics

- **BDT** vars
 - https://xzuo.web.cern.ch/FCC/topVts/BDT/dilep_vars/
 - https://xzuo.web.cern.ch/FCC/topVts/BDT/semilep_heavy_vars/
- Performance and overtraining test
 - https://xzuo.web.cern.ch/FCC/topVts/BDT/

BDT output for fit

xunwu.zuo@cern.ch

Fit result

Cut-based result for comparison

category	dilep	semilep_cs	semilep_ud	dihad	combined
significance	5.83	1.13	4.78	1.49	7.77
precision	+29%/-25%	+97%/-88%	+42%/-33%	+177%/-99%	+22%/-20%

• BDT-based result

category	dilep	$semilep_light$	$semilep_heavy$	combined
significance	8.83	4.09	2.69	10.5
uncertainty	$ +20\% \\ -18\%$	$+35\% \\ -30\%$	$+50\% \\ -41\%$	$ +16\% \\ -15\%$

Further ideas

- Currently have O(200k) events for each training, BDT not enough to explore complex correlations
 - Need better algorithm to extract hadronic top reco
- Systematically optimize jet clustering algorithm to recover signal efficiency

