Observing sudden beam loss events using bunch-by-bunch BPMs at SuperKEKB

UTokyo, KEK, SLAC <u>Riku Nomaru</u>, Gaku Mitsuka, Larry Ruckman

- 1. SuperKEKB and Sudden Beam Loss
- 2. Development of a new Bunch Oscillation Recorder
- 3. Test of Bunch Oscillation Recorder
- 4. Observation and study of Sudden Beam Loss
- 5. Summary and outlook

The SuperKEKB / Belle II experiment

Luminosity Improvement

The number of physics events $N = \sigma[\text{cm}^2] \int L[\text{cm}^{-2}\text{s}^{-1}] dt[\text{s}]$ Luminosity

To improve the performance of the new physics search, the luminosity of SuperKEKB must be improved.

LS1 (Jun. 2022 to Feb. 2024) was over and we are now aiming for even higher luminosity.

However, Sudden Beam Loss is a major obstacle to improving luminosity

Sudden Beam Loss (SBL)

Ampere class beam is suddenly lost and aborted within a few turns (tens of µs)

Due to SBL concerns, beam current cannot be increased so that luminosity has been stayed lower.

Determining the cause of SBL and resolving it is an urgent task for SuperKEKB.

SBL observation before LS1

Bunch Oscillation Recorder (BOR)

Records bunch-by-bunch beam position and charge for several turns just before the beam abort.

- Multiple BORs are needed
- Cover the betatron phase widely to avoid creating dead areas
- Determine instability source point(s)

Target

Create a BOR that is portable and has measurement accuracy equivalent to or greater than the VME-BOR (~30µm)

→ RFSoC, which is attracting attention in the high frequency signal field.

Development of a new Bunch Oscillation Recorder using RFSoC

RFSoC-BOR

RF System on Chip (RFSoC)

by AMD/Xilinx

FPGA, CPU, ADC, and DAC all in one chip

- No need to design communication with data converters
- Up to 16 channels of ADCs up to 5Gsps, 14-bit (Gen3)
- Synchronized multi-channel high-speed sampling

Benefits of using RFSoC for BOR

- We can improve ADC bit width
- Easy to carry along a ring
 →narrow down the candidate points of origin.
- We can develop quickly

RFSoC Evaluation board, ZCU111

8 channels of 12-bit ADC (maximum of 4096Msps)

daughter board XM500

Measurement of bunch position

RFSoC-BOR circuit

https://github.com/slaclab/Simple-ZCU111-Example

Operation test of RFSoC-BOR

Evaluation of measurement resolution

- Changing the local beam bump position, measurement was performed with RFSoC. $y = k_y \frac{\Delta}{\Sigma} (k_y \text{ by boundary element method})$
- The positions measured with RFSoC matches closely with the bump position.
 - Stdev for each measurement point is approximately 30µm
 - → Achieved the target measurement resolution equivalent to that of VME-BOR

Comparison with the existing monitor

Bunch oscillations are intentionally induced by inverting the phase of the bunch-by-bunch feedback kicker.

The magnitude of oscillation and the growth time of instability were almost the same, so the RFSoC functioned as a BOR without any problems.

Develop and install two RFSoC-BORs

System capable of measuring bunch position and charge at multiple points

Observation and study of sudden beam loss events using RFSoC-BORs

Observation of SBL using RFSoC-BORs

Bunch oscillations during SBL events

Pressure burst

When SBL occurs, the pressure in the chamber often rises abnormally at some point on the ring.

 \rightarrow We call it "Pressure burst"

D01H4 D01H5 D02H4 D02H3

D02

D01

Previous studies on pressure burst

- There were also beam aborts with pressure burst events at LER in 2016
- Cause: Collision of the beam with dust falling from the top of the chamber. The pressure burst occurs at the location where the dust and beam collide.

[[]S. Terui et al., PASJ2017]

- Beam current loss over several hundred µs to about 1 ms. (slower than SBL)
- Synchrotron oscillation when the beam loses momentum due to collision with dust

Even in the case of the SBL, could the beam interact with other materials at the location where pressure burst occurs or receive kick forces that lead to fast beam loss?

Relation between pressure burst and SBL

SBL events with pressure bursts in D10 section occurred very frequently.

It's thought that the beam received force at the D10 section

Focus on the timing of oscillations start

About 33 SBL events Which of the X and Y pos of Fuji-RFSoC and D5-RFSoC detected oscillation first?

Fuji-RFSoC tends to detect oscillation earlier

Betatron Phase Difference

	D10 section Kick source	Fuji- RFSoC	D5- RFSoC
X betatron phase diff (rad)	0	21.40 π	40.89 π
Y betatron phase diff (rad)	0	22.56 π	42.93 π
		Half integer	Ínteger

Kick at point $1 \rightarrow \text{Observe}$ at point 2

$$y_2 = \sqrt{\beta_{y1}\beta_{y2}} \sin \Psi_{12} \Delta y_1'$$

Phase diff between two points

Consistent with "Fuji-RFSoC tends to detect oscillation earlier"

Summary and outlook

- Sudden Beam Loss (SBL) is a major problem in SuperKEKB.
- To observe and analyze SBL in detail, we developed a new Bunch Oscillation Recorder (BOR) using RFSoC.

	RECEIVED: September 27, 2024
	Revised: November 28, 2024
	ACCEPTED: December 2, 2024
	Published: December 20, 202
Development of	a novel bunch oscillation recorder with
	- 55
	- 37
R. Nomaru⊚, ^{a,b,∗} G. Mits	uka [©] , ^{<i>b,d</i>} L. Ruckman [©] and R. Herbst [©]
R. Nomaru ^o , ^{a,b,*} G. Mits	suka [®] , ^{b,d} L. Ruckman ^{®c} and R. Herbst ^{®c}
R. Nomaru ⁽²⁾ , ^{a,b,*} G. Mits ^a Department of Physics, The Bunkyo, Tokyo 113-0033, J.	suka [®] , ^{b,d} L. Ruckman ^{®c} and R. Herbst ^{®c} ? University of Tokyo, apan
R. Nomaru ⁽²⁾ , ^{a,b,*} G. Mits ^a Department of Physics, The Bunkyo, Tokyo 113-0033, Jo ^b KEK,	suka [®] , ^{b,d} L. Ruckman ^{©c} and R. Herbst ^{©c} ¹ University of Tokyo, apan
R. Nomaru ⁽²⁾ , ^{a,b,*} G. Mits ^a Department of Physics, The Bunkyo, Tokyo 113-0033, Ja ^b KEK, Oho, Tsukuba, Ibaraki 305-	suka [®] , ^{b,d} L. Ruckman ^{®c} and R. Herbst ^{®c} ¹² University of Tokyo, apan 0801, Japan
R. Nomaru [©] , ^{a,b,∗} G. Mits ^a Department of Physics, The Bunkyo, Tokyo 113-0033, Ja ^b KEK, Oho, Tsukuba, Ibaraki 305- ^c SLAC National Accelerator	suka [©] , ^{b,d} L. Ruckman [©] ^c and R. Herbst [©] ^c ¹ University of Tokyo, apan 0801, Japan Laboratory,
R. Nomaru ³ , ^{a,b,*} G. Mits ^a Department of Physics, The Bunkyo, Tokyo 113-0033, Ja ^b KEK, Oho, Tsukuba, Ibaraki 305- ^c SLAC National Accelerator 2575 Sand Hill Road, M/S 9	suka [®] , ^{b,d} L. Ruckman [®] ^c and R. Herbst [®] ^c ⁹ University of Tokyo, apan 0801, Japan ¹ Laboratory, ⁹ 6, Menlo Park, CA 94025, U.S.A.
R. Nomaru [•] , ^{a,b,*} G. Mits ^a Department of Physics, The Bunkyo, Tokyo 113-0033, Ja ^b KEK, Oho, Tsukuba, Ibaraki 305- ^c SLAC National Accelerator 2575 Sand Hill Road, M/S 9 ^d SOKENDAI.	suka [®] , ^{b,d} L. Ruckman [®] ^c and R. Herbst ^{®c} 2 University of Tokyo, apan 0801, Japan 2 Laboratory, 96, Menlo Park, CA 94025, U.S.A.

- Improve accuracy through new daughter board development
- Develop and install more BORs by taking advantage of portability
- SBL events observations were performed using new BORs.
 - Beam size increase
 - Relationship with Pressure Burst

Thank you for your attention.

Back up

Black stain VACSEAL?

VACSEAL High Vacuum Leak Sealant

MO-type flange

Texas Instruments THS4303

SMALL SIGNAL FREQUENCY RESPONSE

LORCH 5LP8-600B-SR

MACOM Microwave Hybrid Junction H-183-4

 Σ

λ/4

1.0

10

30

100 300

1000

FREQUENCY (MHz)

2000

3000 3500

Beam size monitor

Visible light CMOS Imaging is done once every two turns with an exposure time of 1 us.

collimator

head

D

С

Bunch Charge loss

 By dividing the ring with two RFSoC-BORs, it is possible to determine where charge loss is occurring.

Section 2

D5→Fuji

D01V

D02

In this example, there appears to be charge loss mainly in section 1

Bunch Charge loss

• Take the difference between the bunch charges recorded by two RFSoC-BORs

Most of the charge loss occurred in Section 1 (Fuji \rightarrow D5). Large oscillation and beam size increase before entering D06 collimator section

Relation between pressure burst and SBL

SBL events with pressure bursts in D10 section occurred frequently.

they always detect pressure bursts at the same time.

$$y_2 = \sqrt{\beta_{y1}\beta_{y2}} \sin \Psi_{12} \,\Delta y_1'$$

"②Tendency to see oscillations earlier in X pos than in Y pos"

Beta functions in X and Y directions are equal at the Kick source

→ Possibly reflecting the nature of the kick itself that the bunch receives, rather than due to the beta function or phase difference

Also, the horizontal dispersion function is non-zero

 \rightarrow If the beam loses momentum when it collides with dust, it could also cause X oscillations.

By classifying SBL events by the location of the pressure burst, we gained new insight into the process of SBL events.

Pressure burst and oscillation duration

Focus on D10_L02/03 and D10_L05

D10_L05

The oscillation duration is very short for all events. the phase relationship is such that it will hit the D06 collimator immediately

On the other hand, D10_L02/03 oscillations tend to last longer

A relationship btwn the location of the pressure burst and SBL 5σ

